Contextuality, Cohomology, and Paradox
(arXiv:1502.03097)

Samson Abramsky, Rui Soares Barbosa,
Kohei Kishida, Ray Lal, and Shane Mansfield
(speaking)

QPL2015
17 July, 2015
Outline

1. Topological model for contextuality.
2. Cohomology: Contextuality is like “impossible figures”.
3. Relation to QM no-go theorems.
Bell Non-Localyty

Bell-type setup. Input-output box for (2, 2, 2) scenario:

![Input-output box](image)

Distribution $p(o_A, o_B | a_i, b_j)$ for each context $\{a_i, b_j\}$.

<table>
<thead>
<tr>
<th>(a_0, b_0)</th>
<th>$(0, 0)$</th>
<th>$(0, 1)$</th>
<th>$(1, 0)$</th>
<th>$(1, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0, b_0)</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>$1/2$</td>
</tr>
<tr>
<td>(a_0, b_1)</td>
<td>$3/8$</td>
<td>$1/8$</td>
<td>$1/8$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>(a_1, b_0)</td>
<td>$3/8$</td>
<td>$1/8$</td>
<td>$1/8$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>(a_1, b_1)</td>
<td>$1/8$</td>
<td>$3/8$</td>
<td>$3/8$</td>
<td>$1/8$</td>
</tr>
</tbody>
</table>
A table may be logically non-local / contextual. E.g. model by Hardy 1993:
\[
\begin{array}{cccc}
(a_0, b_0) & (0, 0) & (0, 1) & (1, 0) & (1, 1) \\
 & 1/2 & 0 & 0 & 1/2 \\
(a_0, b_1) & 3/8 & 1/8 & 1/8 & 3/8 \\
(a_1, b_0) & 3/8 & 1/8 & 1/8 & 3/8 \\
(a_1, b_1) & 1/8 & 3/8 & 3/8 & 1/8 \\
\end{array}
\]

No local probability table has this support. (Logical non-locality / contextuality implies probabilistic one.)
Possiblility table: non-zero $\mapsto 1$ ("possible")
0 $\mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

\[
\begin{array}{c|cccc}
(a, b) & (0, 0) & (0, 1) & (1, 0) & (1, 1) \\
\hline
(a_0, b_0) & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
(a_0, b_1) & \frac{3}{8} & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} \\
(a_1, b_0) & \frac{3}{8} & \frac{1}{8} & \frac{1}{8} & \frac{3}{8} \\
(a_1, b_1) & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8}
\end{array}
\]
Possibility table: non-zero $\mapsto 1$ ("possible")
$0 \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

![Possibility Table](image)

No local probability table has this support. (Logical non-locality / contextuality implies probabilistic one.)
Possibility table: non-zero \mapsto 1 (“possible”)

0 \mapsto 0 (“impossible”).

Support of a probability table is a possibility table.

Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0, b_0)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(a_0, b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1, b_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1, b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Possibility table: non-zero $\mapsto 1$ (“possible”)
0 $\mapsto 0$ (“impossible”).

Support of a probability table is a possibility table. Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

A table may be **logically non-local / contextual**.

<table>
<thead>
<tr>
<th></th>
<th>$(0, 0)$</th>
<th>$(0, 1)$</th>
<th>$(1, 0)$</th>
<th>$(1, 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0, b_0)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(a_0, b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1, b_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1, b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Possiblility table: non-zero $\mapsto 1$ ("possible")

$0 \mapsto 0$ ("impossible").

Support of a probability table is a possibility table.

Marginals, convex combination, no-signalling, locality, etc. all carry over to the possibilistic, logical versions.

A table may be **logically non-local / contextual**.

E.g. model by Hardy 1993:

<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(0, 1)</th>
<th>(1, 0)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0, b_0)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_0, b_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1, b_0)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1, b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

No local probability table has this support.

(Logical non-locality / contextuality implies probabilistic one.)
Theorem (Fine 1982 / Abramsky-Brandenburger 2011). A table $p(\cdot \mid a_i, b_j)_{i,j\in\{0,1\}}$ is local iff

There is a distribution $p(\cdot \mid a_i^0, a_1^i, b_0^i, b_1^i)$ that gives each $p(\cdot \mid a_i^0, b_0^i)$ as a marginal, e.g., $p(\cdot \mid A, O_B^0, a_0^0, b_0^0) = \sum_{O_A, O_B'} p(\cdot \mid A, O_A, b_0^0)$. i.e. a distribution over deterministic $(a_0^i, a_1^i, b_0^i, b_1^i)$.

i.e. the table is a convex combination of the deterministic tables for such $'s.$

Upshot. A no-signalling but non-local table is "Locally consistent": able to assign probabilities / possibilities consistently to the family of measurement contexts $f a_i^i, b_j^i; g$.

"Globally inconsistent": not able to to the set $f a_0, a_1; b_0, b_1 g$ of all measurements.

Topology on the set of measurements.
\textbf{Theorem} (Fine 1982 / Abramsky-Brandenburger 2011). A table $p(\cdot | a_i, b_j)_{i,j\in\{0,1\}}$ is local iff

- There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o,o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$
Theorem (Fine 1982 / Abramsky-Brandenburger 2011). A table $p(\cdot \mid a_i, b_j)_{i,j\in\{0,1\}}$ is local iff

- There is a distribution $p(\cdot \mid a_0, a_1, b_0, b_1)$ that gives each $p(\cdot \mid a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B \mid a_0, b_0) = \sum_{o,o'} p(o_A, o, o_B, o' \mid a_0, a_1, b_0, b_1);$$

- i.e. a distribution over deterministic

$$\lambda_{(a_0,a_1,b_0,b_1)} \mapsto (0,0,0,0),$$
$$\lambda_{(a_0,a_1,b_0,b_1)} \mapsto (0,0,0,1),$$
$$\vdots$$
$$\lambda_{(a_0,a_1,b_0,b_1)} \mapsto (1,1,1,1);$$

![Diagram of measurement contexts and distributions](image-url)
Theorem (Fine 1982 / Abramsky-Brandenburger 2011).

A table \(p(\cdot | a_i, b_j)_{i,j\in\{0,1\}} \) is local iff

- There is a distribution \(p(\cdot | a_0, a_1, b_0, b_1) \) that gives each \(p(\cdot | a_i, b_j) \) as a marginal, e.g.,
 \[
p(o_A, o_B | a_0, b_0) = \sum_{o,o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);
 \]
 i.e. a distribution over deterministic
 \[
 \lambda(a_0,a_1,b_0,b_1) \mapsto (0,0,0,0),
 \]
 \[
 \lambda(a_0,a_1,b_0,b_1) \mapsto (0,0,0,1),
 \]
 \[
 \vdots
 \]
 \[
 \lambda(a_0,a_1,b_0,b_1) \mapsto (1,1,1,1);
 \]
 i.e. the table is a convex combination of the deterministic tables for such \(\lambda \)'s.
Theorem (Fine 1982 / Abramsky-Brandenburger 2011).

A table $p(\cdot \mid a_i, b_j)_{i,j \in \{0,1\}}$ is local iff

- There is a distribution $p(\cdot \mid a_0, a_1, b_0, b_1)$ that gives each $p(\cdot \mid a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B \mid a_0, b_0) = \sum_{o,o'} p(o_A, o, o_B, o' \mid a_0, a_1, b_0, b_1);$$

Upshot. A no-signalling but non-local table is

- “Locally consistent”:

 able to assign probabilities / possibilities consistently to the family of measurement contexts \(\{a_i, b_j\}\);
Theorem (Fine 1982 / Abramsky-Brandenburger 2011). A table $p(\cdot | a_i, b_j)_{i,j \in \{0,1\}}$ is local iff

- There is a distribution $p(\cdot | a_0, a_1, b_0, b_1)$ that gives each $p(\cdot | a_i, b_j)$ as a marginal, e.g.,

$$p(o_A, o_B | a_0, b_0) = \sum_{o,o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);$$

Upshot. A no-signalling but non-local table is

- “Locally consistent”:
 able to assign probabilities / possibilities consistently to the family of measurement contexts $\{a_i, b_j\};$

- “Globally inconsistent”:
 not able to
to the set $\{a_0, a_1, b_0, b_1\}$ of all measurements.
Theorem (Fine 1982 / Abramsky-Brandenburger 2011).

A table \(p(\cdot | a_i, b_j)_{i,j \in \{0,1\}} \) is local iff

- There is a distribution \(p(\cdot | a_0, a_1, b_0, b_1) \) that gives each \(p(\cdot | a_i, b_j) \) as a marginal, e.g.,
 \[
 p(o_A, o_B | a_0, b_0) = \sum_{o,o'} p(o_A, o, o_B, o' | a_0, a_1, b_0, b_1);
 \]

Upshot. A no-signalling but non-local table is

- “Locally consistent”:
 able to assign probabilities / possibilities consistently to the family of measurement contexts \(\{a_i, b_j\} \);

- “Globally inconsistent”:
 not able to
 to the set \(\{a_0, a_1, b_0, b_1\} \) of all measurements.

Topology on the set of measurements.
Topological Model for Contextuality

Topological spaces of variables and of their values.
Topological Model for Contextuality

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers
Topological spaces of **variables** and of their **values**.

- **measurements** and **outcomes**
- **sentences** and **truth values**
- **questions** and **answers**

For each **variable** x,
Topological Model for Contextuality

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable x,

a dependent type $F(x)$ of values.
Topological Model for Contextuality

Topological spaces of variables and of their values.

- measurements and outcomes
- sentences and truth values
- questions and answers

For each variable x, a dependent type $F(x)$ of values.

"Bundle" $\sum_{x \in X} F(x)$
When we ask several questions, answers may obey constraints:
When we ask several questions, answers may obey constraints:

- laws of physics, e.g., Charles’s law
- laws of logic

\[\phi \quad \phi \quad \phi \]

\[\begin{array}{c}
\text{tt} \\
\text{ff}
\end{array} \]

\[\begin{array}{c}
\varphi \\
\neg \varphi \\
\neg \neg \varphi
\end{array} \]

\[F(t) \]

\[F(v) \]
When we ask several questions, answers may obey constraints:

- laws of physics, e.g., Charles’s law
- laws of logic

Distinguish good and bad ways of connecting dots in bundles ... just like “continuous sections”!
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$a_0 \bullet \bullet b_0$

$a_1 \bullet \bullet b_1$

Global section:

$\left(a_0; a_1; b_0; b_1 \right) \neq \left(1; 0; 1; 0 \right)$.

Logical contextuality:

Not all sections extend to global ones.

Local consistency, global inconsistency
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

\[
\begin{array}{c|ccccc}
 & 00 & 01 & 10 & 11 \\
\hline
a_0b_0 & 1 & 1 & 1 & 1 \\
a_0b_1 & 0 & 1 & 1 & 1 \\
a_1b_0 & 0 & 1 & 1 & 1 \\
a_1b_1 & 1 & 1 & 1 & 0 \\
\end{array}
\]

Global section:

\((a_0; a_1; b_0; b_1) \neq (1; 0; 1; 0)\).

Logical contextuality:
Not all sections extend to global ones.

Local consistency, global inconsistency.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda_{(a_0,a_1,b_0,b_1)} \rightarrow (1,0,1,0)$.

Logical contextuality: Not all sections extend to global ones.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda(a_0, a_1, b_0, b_1)\mapsto(1, 0, 1, 0)$.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1 1 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Global section: $\lambda(a_0,a_1,b_0,b_1)\rightarrow(1,0,1,0)$.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda(a_0,a_1,b_0,b_1) \mapsto (1,0,1,0)$.

Logical contextuality: Not all sections extend to global ones.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda_{(a_0,a_1,b_0,b_1)}\rightarrow(1,0,1,0)$.

Logical contextuality: Not all sections extend to global ones. Local consistency, global inconsistency.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda(a_0,a_1,b_0,b_1) \rightarrow (1,0,1,0)$.

Logical contextuality: Not all sections extend to global ones.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda(a_0, a_1, b_0, b_1) \mapsto (1, 0, 1, 0)$.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda(a_0,a_1,b_0,b_1) \rightarrow (1,0,1,0)$.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda(a_0, a_1, b_0, b_1) \mapsto (1,0,1,0)$.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: \(\lambda(a_0,a_1,b_0,b_1) \mapsto (1,0,1,0) \cdot \)

Logical contextuality: Not all sections extend to global ones.
Hardy model:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Global section: $\lambda_{(a_0, a_1, b_0, b_1)} \mapsto (1, 0, 1, 0)$.

Logical contextuality: Not all sections extend to global ones.

Local consistency, global inconsistency
Hardy:

Logical contextuality: Not all sections extend to global.
PR box:

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0b_0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_0b_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a_1b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical contextuality: Not all sections extend to global.
Logical contextuality: Not all sections extend to global.
Logical contextuality: Not all sections extend to global.
<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0 b_0$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$a_0 b_1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_0$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$a_1 b_1$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical contextuality: Not all sections extend to global.
Logical contextuality: Not all sections extend to global.
Logical contextuality: Not all sections extend to global.
Hardy:

PR box:

Logical contextuality: Not all sections extend to global.
Logical contextuality: Not all sections extend to global.
Hardy:

PR box:

Logical contextuality: Not all sections extend to global.
Logical contextuality: Not all sections extend to global.

Strong contextuality: No global section at all.
Logical contextuality: Not all sections extend to global.

Strong contextuality: No global section at all.

Hierarhcy of contextuality:

Probabilistic \supseteq **Logical** \supseteq **Strong contextuality**
Logical contextuality: Not all sections extend to global.
Strong contextuality: No global section at all.
Hierarchies of contextuality:
- Probabilistic ⊈ Logical ⊈ Strong contextuality
Contextuality in Logical Paradoxes

Read bundles \(\pi : \sum_{x \in X} F(x) \to X \) in logic terms:
- \(x \in X \) are sentences,
- \(\ttt, \fff \in F(x) \) are truth values.
Contextuality in Logical Paradoxes

Read bundles $\pi : \sum_{x \in X} F(x) \rightarrow X$ in logic terms:

- $x \in X$ are sentences,
- $\mathsf{tt}, \mathsf{ff} \in F(x)$ are truth values.

“West is true”

“South is true”

“East is true”

“North is false”
Contextuality in Logical Paradoxes

Read bundles $\pi : \sum_{x \in X} F(x) \to X$ in logic terms:

- $x \in X$ are sentences,
- $\top\top, \bot\bot \in F(x)$ are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.
Contextuality in Logical Paradoxes

“West is true”

“South is true”

“East is true”

“North is false”

Read bundles:

\[\sum_{x \in X} F(x) \]

In logic terms, \(x \) are sentences, \(t, f \); \(F(x) \) are truth values.
Contextuality in Logical Paradoxes

"West is true"

"South is true"

"North is false"

"East is true"

Read bundles: \[\sum_{x \in X} F(x) \]

In logic terms, \(x \in X \) are sentences, \(t, f \); \(F(x) \) are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.
Contextuality in Logical Paradoxes

Read bundles:
\[\sum_{x \in X} F(x) \]

In logic terms, \(x \in X \) are sentences, \(t, f \); \(F(x) \) are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.

"West is true"

"South is true"

"North is false"

"East is true"
Contextuality in Logical Paradoxes

"West is true"
"South is true"
"East is true"
"North is false"

Read bundles:
\[\sum_{x \in X} F(x) \]

In logic terms, \(x \in X \) are sentences, \(\text{tt} \); \(\text{ff} \) \(F(x) \) are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.
Contextuality in Logical Paradoxes

Read bundles:
\[
\sum_{x \in X} F(x)!
\]
In logic terms: \(x \in X\) are sentences, \(t t\); \(f f\) \(F(x)\) are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.

“West is true”

“South is true”

“East is true”

“North is false”
Contextuality in Logical Paradoxes

Read bundles:
\[\sum x \in X \]

In logic terms: \(x \in X \) are sentences, \(t \); \(f \) are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.
Contextuality in Logical Paradoxes

Read bundles: \[\sum_{x \in X} \neg F(x) \]

In logic terms: \(x \in X \) are sentences, \(t \); \(f \) \(F(x) \) are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as "paradoxes" of (strong) contextuality.

"West is true"
"South is true"
"East is true"
"North is false"
Contextuality in Logical Paradoxes

This type of logical paradoxes (incl. the Liar Paradox) have the same topology as “paradoxes” of (strong) contextuality.
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes

\[\pi : \sum_{x \in X} F(x) \rightarrow X. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes
 \[\pi : \sum_{x \in X} F(x) \to X. \]

 (With some axioms, e.g. no-signalling.)
How to Formally Define…

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes

\[\pi : \sum_{x \in X} F(x) \rightarrow X. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes

\[\pi : \sum_{x \in X} F(x) \rightarrow X. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes

\[\pi : \sum_{x \in X} F(x) \to X. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes
 \[\pi : \sum_{x \in X} F(x) \to X. \]

2. Presheaf
 \[F : C(X)^{\text{op}} \to \text{Sets}. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes
 \[\pi : \sum_{x \in X} F(x) \to X. \]

2. Presheaf
 \[F : C(X)^{\text{op}} \to \text{Sets}. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes
 \[\pi : \sum_{x \in X} F(x) \rightarrow X. \]

2. Presheaf
 \[F : C(X)^{\text{op}} \rightarrow \text{Sets}. \]
 (With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes
 \[\pi : \sum_{x \in X} F(x) \to X. \]

2. Presheaf
 \[F : \text{C}(X)^{\text{op}} \to \text{Sets}. \]
 (With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes

\[\pi : \sum_{x \in X} F(x) \rightarrow X. \]

2. Presheaf

\[F : C(X)^{\text{op}} \rightarrow \text{Sets}. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes
 \[\pi : \sum_{x \in X} F(x) \to X. \]

2. Presheaf
 \[F : C(X)^{\text{op}} \to \text{Sets}. \]

(With some axioms, e.g. no-signalling.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes

 \[\pi : \sum_{x \in X} F(x) \to X. \]

2. Presheaf

 \[F : C(X)^{\text{op}} \to \text{Sets}. \]

(With some axioms, e.g. no-signalling.)

(Global sections can be defined suitably.)
How to Formally Define …

Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

1. Map of simplicial complexes
 \[\pi : \sum_{x \in X} F(x) \to X. \]

2. Presheaf
 \[F : C(X)^{\text{op}} \to \text{Sets}. \]
 (With some axioms, e.g. no-signalling.)
 (Global sections can be defined suitably.)

2 makes it possible to apply cohomology.
Cohomology of Contextuality

Local consistency, global inconsistency…

Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th. s extends to a “cocycle” $s = 0$. (False positives, e.g. in Hardy model: Works for many cases; e.g. PR box: $a_0 b_0 a_1 b_1$).
Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th.

s extends to a “cocycle” $\iff \gamma_s = 0$.
Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th.

s extends to a “cocycle” $\iff \gamma_s = 0$.

\[
\begin{array}{cccc}
\begin{array}{cccc}
a_0 & a_1 & b_0 & b_1 \\
0 & 1 & 0 & 1 \\
\end{array}
\end{array}
\]
Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th. s extends to a “cocycle” $\iff \gamma_s = 0$.
Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th.

s extends to a “cocycle” $\iff \gamma_s = 0$.

\[\uparrow \]

s extends to global

\[\begin{array}{ccc}
a_0 & b_0 & 0 \\
1 & 1 & 1 \\
a_1 & b_1 & 0 \\
\end{array} \]
Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th.

s extends to a “cocycle” $\iff \gamma_s = 0$.

s extends to global
Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th.

s extends to a “cocycle” $\iff \gamma_s = 0$.

$\uparrow \downarrow$

s extends to global

- False positives, e.g. in Hardy model:
Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ that assigns to each section s an “obstruction” γ_s s.th.

s extends to a “cocycle” $\iff \gamma_s = 0.$

$\uparrow \downarrow$

s extends to global

- False positives,
e.g. in Hardy model.
- Works for many cases;
e.g. PR box:
“All vs Nothing” Argument

Joint outcomes may / may not satisfy parity equations:

\[
\begin{align*}
(0;0) & \quad x_2 = 0 \\
(0;1) & \quad x_2 = 1 \\
(1;0) & \quad x_2 = 1 \\
(1;1) & \quad x_2 = 0
\end{align*}
\]

\[a_0 \quad b_0 = 0 \]

\[a_1 \quad b_1 = 1 \]

LHS's \[\oplus\] RHS's

The equations are inconsistent, i.e. no global assignment to \(a_0, a_1, b_0, b_1\), i.e. strongly contextual!
“All vs Nothing” Argument

Joint outcomes may / may not satisfy parity equations:

\[(0, 0) \sim x \oplus y = 0\]
\[(0, 1) \sim x \oplus y = 1\]
\[(1, 0) \sim x \oplus y = 1\]
\[(1, 1) \sim x \oplus y = 0\]
“All vs Nothing” Argument

Joint outcomes may / may not satisfy parity equations:

\[(0, 0) \sim x \oplus y = 0\]
\[(0, 1) \sim x \oplus y = 1\]
\[(1, 0) \sim x \oplus y = 1\]
\[(1, 1) \sim x \oplus y = 0\]

\[a_0 \oplus b_0 = 0\]
\[a_0 \oplus b_1 = 0\]
\[a_1 \oplus b_0 = 0\]
\[a_1 \oplus b_1 = 1\]
"All vs Nothing" Argument

Joint outcomes may / may not satisfy parity equations:

(0, 0) \leadsto x \oplus y = 0
(0, 1) \leadsto x \oplus y = 1
(1, 0) \leadsto x \oplus y = 1
(1, 1) \leadsto x \oplus y = 0

\begin{align*}
a_0 \oplus b_0 &= 0 \\
a_0 \oplus b_1 &= 0 \\
a_1 \oplus b_0 &= 0 \\
a_1 \oplus b_1 &= 1
\end{align*}

\[\bigoplus \text{LHS}'s = \bigoplus \text{RHS}'s \]
"All vs Nothing" Argument

Joint outcomes may / may not satisfy parity equations:

\[(0, 0) \rightsquigarrow x \oplus y = 0\]
\[(0, 1) \rightsquigarrow x \oplus y = 1\]
\[(1, 0) \rightsquigarrow x \oplus y = 1\]
\[(1, 1) \rightsquigarrow x \oplus y = 0\]

\[a_0 \oplus b_0 = 0\]
\[a_0 \oplus b_1 = 0\]
\[a_1 \oplus b_0 = 0\]
\[a_1 \oplus b_1 = 1\]

\[\bigoplus \text{LHS's} \neq \bigoplus \text{RHS's}\]

The equations are inconsistent,
“All vs Nothing” Argument

Joint outcomes may / may not satisfy parity equations:

(0, 0) \implies x \oplus y = 0
(0, 1) \implies x \oplus y = 1
(1, 0) \implies x \oplus y = 1
(1, 1) \implies x \oplus y = 0

\begin{align*}
a_0 \oplus b_0 &= 0 \\
a_0 \oplus b_1 &= 0 \\
a_1 \oplus b_0 &= 0 \\
a_1 \oplus b_1 &= 1
\end{align*}

\[\bigoplus \text{LHS’s} \neq \bigoplus \text{RHS’s} \]

The equations are inconsistent,
i.e. no global assignment to \(a_0, a_1, b_0, b_1\),
i.e. strongly contextual!
“All vs nothing” arguments in QM can be formulated the same way.

- GHZ state:
 \[a_0 \oplus b_0 \oplus c_0 = 0 \]
 \[a_0 \oplus b_1 \oplus c_1 = 1 \]
 \[a_1 \oplus b_0 \oplus c_1 = 1 \]
 \[a_1 \oplus b_1 \oplus c_0 = 1 \]

 \[\bigoplus \text{LHS’s} = 0 \neq 1 = \bigoplus \text{RHS’s} \]

- Kochen-Specker-type:
 18 variables, each occurs twice, so \(\bigoplus \text{LHS’s} = 0 \);
 9 equations, all of parity 1, so \(\bigoplus \text{RHS’s} = 1 \).
Beyond QM, some NS tables suggest generalization.
Beyond QM, some NS tables suggest generalization.

- “Box 25” of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

\[
\begin{align*}
 a_0 + 2b_0 &\equiv 0 \mod 3 & a_1 + 2c_0 &\equiv 0 \mod 3 \\
 a_0 + b_1 + c_0 &\equiv 2 \mod 3 & a_0 + b_1 + c_1 &\equiv 2 \mod 3 \\
 a_1 + b_0 + c_1 &\equiv 2 \mod 3 & a_1 + b_1 + c_1 &\equiv 2 \mod 3
\end{align*}
\]
Beyond QM, some NS tables suggest generalization.

- “Box 25” of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

\[
\begin{align*}
 a_0 + 2b_0 &\equiv 0 \pmod{3} & a_1 + 2c_0 &\equiv 0 \pmod{3} \\
 a_0 + b_1 + c_0 &\equiv 2 \pmod{3} & a_0 + b_1 + c_1 &\equiv 2 \pmod{3} \\
 a_1 + b_0 + c_1 &\equiv 2 \pmod{3} & a_1 + b_1 + c_1 &\equiv 2 \pmod{3} \\
 \sum \text{LHS’s} &\equiv 0 \pmod{3} & \sum \text{RHS’s} &\equiv 2 \pmod{3}
\end{align*}
\]
Beyond QM, some NS tables suggest generalization.

- “Box 25” of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

\[
\begin{align*}
 a_0 + 2b_0 &\equiv 0 \text{ mod } 3 \\
 a_0 + b_1 + c_0 &\equiv 2 \text{ mod } 3 \\
 a_1 + b_0 + c_1 &\equiv 2 \text{ mod } 3 \\
 a_1 + 2c_0 &\equiv 0 \text{ mod } 3 \\
 a_0 + b_1 + c_1 &\equiv 2 \text{ mod } 3 \\
 a_1 + b_1 + c_1 &\equiv 2 \text{ mod } 3
\end{align*}
\]

\[
\begin{align*}
 \sum \text{LHS’s} &\equiv 0 \text{ mod } 3 \\
 \sum \text{RHS’s} &\equiv 2 \text{ mod } 3
\end{align*}
\]

Generalized all-vs-nothing argument uses any commutative ring \(R \) (e.g. \(\mathbb{Z}_n \)) instead of \(\mathbb{Z}_2 \):
Beyond QM, some NS tables suggest generalization.

- “Box 25” of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies

\[
a_0 + 2b_0 \equiv 0 \text{ mod } 3 \\
a_1 + 2c_0 \equiv 0 \text{ mod } 3 \\
a_0 + b_1 + c_0 \equiv 2 \text{ mod } 3 \\
a_0 + b_1 + c_1 \equiv 2 \text{ mod } 3 \\
a_1 + b_0 + c_1 \equiv 2 \text{ mod } 3 \\
a_1 + b_1 + c_1 \equiv 2 \text{ mod } 3
\]

\[
\sum \text{LHS’s} \equiv 0 \text{ mod } 3 \\
\sum \text{RHS’s} \equiv 2 \text{ mod } 3
\]

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_n) instead of \mathbb{Z}_2:

- Linear equations $k_0 x_0 + \cdots + k_m x_m = p \quad (k_0, \ldots, k_m, p \in R)$.
Beyond QM, some NS tables suggest generalization.

- “Box 25” of Pironio-Bancal-Scarani 2011 admits no parity argument, but satisfies
 \[
 a_0 + 2b_0 \equiv 0 \mod 3 \quad a_1 + 2c_0 \equiv 0 \mod 3 \\
 a_0 + b_1 + c_0 \equiv 2 \mod 3 \quad a_0 + b_1 + c_1 \equiv 2 \mod 3 \\
 a_1 + b_0 + c_1 \equiv 2 \mod 3 \quad a_1 + b_1 + c_1 \equiv 2 \mod 3 \\
 \sum \text{LHS}'s \equiv 0 \mod 3 \quad \sum \text{RHS}'s \equiv 2 \mod 3
 \]

Generalized all-vs-nothing argument uses any commutative ring R (e.g. \mathbb{Z}_n) instead of \mathbb{Z}_2:

- **Linear equations** $k_0x_0 + \cdots + k_mx_m = p \quad (k_0, \ldots, k_m, p \in R)$.
- Equations are inconsistent if a subset of them is s.th.
 - coefficients k of each variable x add up to 0,
 - parities p do not.
“Strongly contextual by AvN argument” is explained by “strongly contextual by cohomology”:

Theorem.

Let \mathcal{M} be a no-signalling bundle model. Then

- \mathcal{M} admits a generalized AvN argument in a ring R

implies

- Cohomology (using R) has $\gamma_s = 0$ for no section s in \mathcal{M}.
“Strongly contextual by AvN argument” is explained by “strongly contextual by cohomology”:

Theorem.

Let \mathcal{M} be a no-signalling bundle model. Then
- \mathcal{M} admits a generalized AvN argument in a ring R implies
 - Cohomology (using R) has $\gamma_s = 0$ for no section s in \mathcal{M}.

Heirarchy of strong contextuality:

$$\text{AvN} \subsetneq \text{gen. AvN} \subsetneq \text{cohom. SC} \subseteq \text{SC}$$
“Strongly contextual by AvN argument” is explained by “strongly contextual by cohomology”:

Theorem.

Let \mathcal{M} be a no-signalling bundle model. Then
- \mathcal{M} admits a generalized AvN argument in a ring R implies
- Cohomology (using R) has $\gamma_s = 0$ for no section s in \mathcal{M}.

Hierarchy of strong contextuality:

$$\text{AvN} \subsetneq \text{gen. AvN} \subsetneq \text{cohom. SC} \subsetneq \text{SC} \cup \mathcal{Q} \cap \text{SC}$$
Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.
Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality—local consistency, global inconsistency—is topological in nature, expressed nicely with bundles.
Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality—local consistency, global inconsistency—is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality—local consistency, global inconsistency—is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.
Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality—local consistency, global inconsistency—is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.
- We have the all-vs-nothing argument in QM precisely formulated and generalized. It shows strong contextuality of a large class of models.
Conclusion

General, structural formalism independent of QM formalism. Uniform methods of detecting / showing contextuality.

- Contextuality—local consistency, global inconsistency—is topological in nature, expressed nicely with bundles.
 - They capture contextuality as a phenomenon found in various fields, e.g. logical paradoxes.
- Applying cohomology shows that contextuality is a topological invariant of our bundles.
- We have the all-vs-nothing argument in QM precisely formulated and generalized. It shows strong contextuality of a large class of models.
- Their contextuality is captured by cohomology.
References

