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1 Topological model for contextuality.
2 Cohomology: Contextuality is like “impossible figures”.
3 Relation to QM no-go theorems.
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Bell Non-Locality

Bell-type setup. Input-output box for (2, 2, 2) scenario:

prep

meas meas

a0 or a1 b0 or b1

0 or 1 0 or 1

Distribution p(oA, oB | ai, bj) for each context {ai, bj}.

So a probability table:

(0, 0) (0, 1) (1, 0) (1, 1)
(a0, b0) 1/2 0 0 1/2
(a0, b1) 3/8 1/8 1/8 3/8
(a1, b0) 3/8 1/8 1/8 3/8
(a1, b1) 1/8 3/8 3/8 1/8
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Possiblility table: non-zero 7→ 1 (“possible”)
0 7→ 0 (“impossible”).

Support of a probability table is a possibility table.

Marginals, convex combination, no-signalling, locality, etc.
all carry over to the possibilistic, logical versions.

A table may be logically non-local / contextual.
E.g. model by Hardy 1993:

(0, 0) (0, 1) (1, 0) (1, 1)
(a0, b0) 1/2 0 0 1/2
(a0, b1) 3/8 1/8 1/8 3/8
(a1, b0) 3/8 1/8 1/8 3/8
(a1, b1) 1/8 3/8 3/8 1/8

No local probability table has this support.
(Logical non-locality / contextuality implies probabilistic one.)
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Theorem (Fine 1982 / Abramsky-Brandenburger 2011).
A table p(· | ai, bj)i,j∈{0,1} is local iff

• There is a distribution p(· | a0, a1, b0, b1) that gives
each p(· | ai, bj) as a marginal, e.g.,

p(oA, oB | a0, b0) =
∑
o,o′

p(oA, o, oB, o′ | a0, a1, b0, b1);

• i.e. a distribution over
deterministic
λ(a0,a1,b0,b1)7→(0,0,0,0),
λ(a0,a1,b0,b1)7→(0,0,0,1),

...
λ(a0,a1,b0,b1)7→(1,1,1,1); λ(0,0,0,1)

0, 0 0, 1

0, 0 0, 1a0 b1

0 1

• i.e. the table is a convex

i.e.

combination of the deterministic tables for such λ’s.

Upshot. A no-signalling but non-local table is
• “Locally consistent”:

able to assign probabilities / possibilities consistently
to the family of measurement contexts {ai, bj};

• “Globally inconsistent”:
not able to
to the set {a0, a1, b0, b1} of all measurements.

Topology on the set of measurements.
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Topological Model for Contextuality

Topological spaces of variables and of their values.

• measurements and outcomes
• sentences and truth values
• questions and answers

For each variable x,
a dependent type

F(x) of values.

“Bundle”
∑
x∈X

F(x)

x 2 z

F(x)
F(2) F(z)

X

∑
x∈X

F(x)

π

5



Topological Model for Contextuality

Topological spaces of variables and of their values.
• measurements and outcomes
• sentences and truth values
• questions and answers

For each variable x,
a dependent type

F(x) of values.

“Bundle”
∑
x∈X

F(x)

x 2 z

F(x)
F(2) F(z)

X

∑
x∈X

F(x)

π

5



Topological Model for Contextuality

Topological spaces of variables and of their values.
• measurements and outcomes
• sentences and truth values
• questions and answers

For each variable x,

a dependent type
F(x) of values.

“Bundle”
∑
x∈X

F(x)

x 2 z

F(x)
F(2) F(z)

X

∑
x∈X

F(x)

π

5



Topological Model for Contextuality

Topological spaces of variables and of their values.
• measurements and outcomes
• sentences and truth values
• questions and answers

For each variable x,
a dependent type

F(x) of values.

“Bundle”
∑
x∈X

F(x)

x 2 z

F(x)
F(2) F(z)

X

∑
x∈X

F(x)

π

5



Topological Model for Contextuality

Topological spaces of variables and of their values.
• measurements and outcomes
• sentences and truth values
• questions and answers

For each variable x,
a dependent type

F(x) of values.

“Bundle”
∑
x∈X

F(x)

x 2 z

F(x)
F(2) F(z)

X

∑
x∈X

F(x)

π

5



When we ask several questions,
answers may obey constraints:

• laws of physics,
e.g., Charles’s law

• laws of logic

φ ¬φ ¬¬φ

tt

ff

3 t

F(3)
F(t)

Distinguish good and bad ways of connecting dots in bundles
. . . just like “continuous sections”!
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Hardy model:

00 01 10 11
a0b0 1 1 1 1
a0b1 0 1 1 1
a1b0 0 1 1 1
a1b1 1 1 1 0

•a0

•a1

• b0

• b1

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•0

•

Global section: λ(a0,a1,b0,b1) 7→(1,0,1,0).

Logical contextuality: Not all sections extend to global ones.

Local consistency, global inconsistency
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Contextuality in Logical Paradoxes

“West is true”

“South is true”

“East is true”

“North is false”

•
•

•
•

•tt

•ff •

•
ff

• tt

• ff

•tt

•

Read bundles π :
∑

x∈X F(x)→ X in logic terms:
x ∈ X are sentences,

tt, ff ∈ F(x) are truth values.

This type of logical paradoxes (incl. the Liar Paradox) have
the same topology as “paradoxes” of (strong) contextuality.
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How to Formally Define . . .
Bundles that correspond to no-signalling possibility tables.

Two equivalent formulations:

•
•

•
•

•

• •

•

•

•

•

•

X

Σ

π

C(X)op

Sets

F

1 Map of
simplicial complexes

π :
∑
x∈X

F(x)→ X.

2 Presheaf
F : C(X)op → Sets.

(With some axioms,
e.g. no-signalling.)

(Global sections can be
defined suitably.)

2 makes it possible to apply cohomology.
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Cohomology of Contextuality

Local consistency, global inconsistency. . .

Penrose 1991, “On the Cohomology of Impossible Figures”.
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Cohomological test for contextuality:

“Čech cohomology” gives a group homomorphism γ
that assigns to each section s an “obstruction” γs s.th.

s extends to a “cocycle” γs = 0.⇐⇒

s extends to global

⇒ ⇍

• False positives,
e.g. in Hardy model:

• Works for many cases;
e.g. PR box:

•a0

•
b0

• a1

•
b1

•0
• • 1

•

•1
•

1

• 0
•
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“Čech cohomology” gives a group homomorphism γ
that assigns to each section s an “obstruction” γs s.th.

s extends to a “cocycle” γs = 0.⇐⇒

s extends to global
⇒ ⇍

• False positives,
e.g. in Hardy model.

• Works for many cases;
e.g. PR box:

•a0

•
b0

• a1

•
b1

•0

•1
•

•
1

• 0

• 1

•

•

12



“All vs Nothing” Argument

Joint outcomes may / may not
satisfy parity equations:

(0, 0) { x ⊕ 2 = 0
(0, 1) { x ⊕ 2 = 1
(1, 0) { x ⊕ 2 = 1
(1, 1) { x ⊕ 2 = 0

a0 ⊕ b0 = 0
a0 ⊕ b1 = 0
a1 ⊕ b0 = 0
a1 ⊕ b1 = 1

⊕
LHS’s =

⊕
RHS’s

•a0

•
b0

• a1

•
b1

•0

•1
• 0

• 1

• 0

• 1

•

•

The equations are inconsistent,
i.e. no global assignment to a0, a1, b0, b1,
i.e. strongly contextual!
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“All vs nothing” arguments in QM can be formulated
the same way.

• GHZ state: a0 ⊕ b0 ⊕ c0 = 0
a0 ⊕ b1 ⊕ c1 = 1
a1 ⊕ b0 ⊕ c1 = 1
a1 ⊕ b1 ⊕ c0 = 1⊕
LHS’s = 0 , 1 =

⊕
RHS’s

• Kochen-Specker-type:
18 variables, each occurs twice, so

⊕
LHS’s = 0;

9 equations, all of parity 1, so
⊕

RHS’s = 1.

14



Beyond QM, some NS tables suggest generalization.

• “Box 25” of Pironio-Bancal-Scarani 2011
admits no parity argument, but satisfies

a0 + 2b0 ≡ 0 mod 3 a1 + 2c0 ≡ 0 mod 3
a0 + b1 + c0 ≡ 2 mod 3 a0 + b1 + c1 ≡ 2 mod 3
a1 + b0 + c1 ≡ 2 mod 3 a1 + b1 + c1 ≡ 2 mod 3

∑
LHS’s ≡ 0 mod 3

∑
RHS’s ≡ 2 mod 3

Generalized all-vs-nothing argument uses
any commutative ring R (e.g. Zn) instead of Z2:

• Linear equations k0x0 + · · ·+ kmxm = p (k0, . . . , km, p ∈ R).
• Equations are inconsistent if a subset of them is s.th.

• coefficients k of each variable x add up to 0,
• parities p do not.
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“Strongly contextual by AvN argument” is explained by
“strongly contextual by cohomology”:

Theorem.
LetM be a no-signalling bundle model. Then
• M admits a generalized AvN argument in a ring R

implies
• Cohomology (using R) has γs = 0 for no section s inM.

Hieararchy of strong contextuality:

AvN gen. AvN cohom. SC SC⊊ ⊊ ⊆

SC ∩ Q

⊆ ?
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Conclusion

General, structural formalism independent of QM formalism.
Uniform methods of detecting / showing contextuality.

• Contextuality—local consistency, global inconsistency—
is topological in nature, expressed nicely with bundles.

• They capture contextuality as a phenomenon found in
various fields, e.g. logical paradoxes.

• Applying cohomology shows that contextuality is a
topological invariant of our bundles.

• We have the all-vs-nothing argument in QM precisely
formulated and generalized. It shows strong contextuality
of a large class of models.

• Their contextuality is captured by cohomology.
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