Making the stabilizer ZX-calculus complete for scalars

Miriam Backens

Department of Computer Science, University of Oxford

QPL 2015
Outline

Background

Modifying the zx-calculus to keep account of scalars

The new completeness results

Conclusions
Outline

Background

Modifying the zx-calculus to keep account of scalars

The new completeness results

Conclusions
Stabilizer quantum mechanics

- preparation of qubits in state $|0\rangle$
- Clifford unitaries, generated by

\[
S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad C_X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}
\]

- measurements in computational basis
Elements of stabilizer zx-calculus diagrams

- Green nodes with \(n \) inputs and \(m \) outputs,
 \(\alpha \in \{-\pi/2, 0, \pi/2, \pi\} \)

- Red nodes with \(k \) inputs and \(l \) outputs,
 \(\beta \in \{-\pi/2, 0, \pi/2, \pi\} \)

- Hadamard nodes with one input and one output
Elements of stabilizer ZX-calculus diagrams

- Green nodes with n inputs and m outputs,
 $\alpha \in \{-\pi/2, 0, \pi/2, \pi\}$

\[
\begin{bmatrix}
 m \\
 \vdots \\
 n
\end{bmatrix}
\alpha
\] := $|0\rangle \otimes^m \langle 0| \otimes^n + e^{i\alpha} |1\rangle \otimes^m \langle 1| \otimes^n$

- Red nodes with k inputs and l outputs,
 $\beta \in \{-\pi/2, 0, \pi/2, \pi\}$

\[
\begin{bmatrix}
 l \\
 \vdots \\
 k
\end{bmatrix}
\beta
\] := $|+\rangle \otimes^l \langle +| \otimes^k + e^{i\beta} |-\rangle \otimes^l \langle -| \otimes^k$

- Hadamard nodes with one input and one output

\[
\boxed{\text{H}} := |+\rangle \langle 0| + |-\rangle \langle 1|
\]
Scalar diagrams

Definition
A zx-calculus diagram is a scalar if it has no inputs or outputs.
Scalar diagrams

Definition
A zx-calculus diagram is a *scalar* if it has no inputs or outputs.

E.g.
![Diagram with nodes labeled $-\pi/2$, π, H, and $\pi/2$]
Scalar diagrams

Definition
A \mathcal{ZX}-calculus diagram is a scalar if it has no inputs or outputs.

E.g.

The empty diagram represents the identity scalar:

$$\left[\begin{array}{c} \pi/2 \\ \pi/2 \end{array} \right] = 1$$
Zero diagrams

Definition
A \(\text{zx} \)-calculus diagram is a \textit{zero diagram} if it represents a zero matrix.
Zero diagrams

Definition
A \(\text{zx} \)-calculus diagram is a zero diagram if it represents a zero matrix.

E.g. \(\circ \pi \)

\[
\begin{align*}
\begin{bmatrix}
\circ & \pi
\end{bmatrix}
&= |0\rangle \otimes^0 \langle 0| \otimes^0 + e^{i\pi} |1\rangle \otimes^0 \langle 1| \otimes^0 = 1 - 1 = 0
\end{align*}
\]
Rules of the scalar-free ZX-calculus

- only the topology matters
- ignore non-zero scalar factors

Rules also hold upside-down and/or with the colours swapped.
Completeness

Definition
A graphical calculus for quantum theory is complete if any equality that can be derived using matrices can also be derived graphically, i.e. for any diagrams D_1 and D_2:

$$[D_1] = [D_2] \implies D_1 = D_2.$$
Completeness

Definition
A graphical calculus for quantum theory is complete if any equality that can be derived using matrices can also be derived graphically, i.e. for any diagrams \(D_1 \) and \(D_2 \):

\[
[D_1] = [D_2] \implies D_1 = D_2.
\]

Theorem (arXiv:1307.7025)
The scalar-free \(ZX\)-calculus is complete for stabilizer quantum mechanics.

Proof (sketch).
Any non-scalar stabilizer \(ZX\)-calculus diagram can be brought into a (non-unique) normal form called GS-LC form. If two GS-LC form diagrams represent the same operator up to scalar factor, then they are equal in the scalar-free \(ZX\)-calculus.
Outline

Background

Modifying the \mathbf{zx}-calculus to keep account of scalars

The new completeness results

Conclusions
Rules of the \(\text{zx-calculus without scalars} \)

- only the topology matters
- ignore non-zero scalar factors

\[
\begin{align*}
\alpha & = \alpha + \beta \\
\beta & = \cdots \\
\alpha & = \pi \\
\pi & = \alpha \\
\pi & = \pi/2 \\
\end{align*}
\]

Rules also hold upside-down and/or with the colours swapped.
Rules of the zx-calculus with scalars

- only the topology matters

\[\alpha \cdots \beta = \alpha + \beta \]

\[\pi = \pi \]

\[\alpha = \alpha \]

\[H = \frac{\pi}{2} \]

\[-\alpha = -\alpha \]

Rules also hold upside-down and/or with the colours swapped.
Corollaries to the original stabilizer completeness proof

Assume every non-zero scalar diagram has an inverse.

E.g. \[\begin{array}{c}
\text{\text{\includegraphics[width=2cm]{diagram1.png}}} \\
\text{\text{\includegraphics[width=2cm]{diagram2.png}}}
\end{array} \] but \[\begin{array}{c}
\text{\text{\includegraphics[width=2cm]{diagram3.png}}} \\
\text{\text{\includegraphics[width=2cm]{diagram4.png}}}
\end{array} \]
Corollaries to the original stabilizer completeness proof

Assume every non-zero scalar diagram has an inverse.

E.g. \[\begin{array}{c}
\text{Diagram 1}
\end{array} \]

Assume \[\begin{array}{c}
\text{Diagram 2}
\end{array} \]

Then: \[\begin{array}{c}
\text{Diagram 3}
\end{array} \]
Corollaries to the original stabilizer completeness proof

Assume every non-zero scalar diagram has an inverse.

Corollary

Any stabilizer scalar diagram can be decomposed into disconnected segments containing at most two nodes each.
Corollaries to the original stabilizer completeness proof

Assume every non-zero scalar diagram has an inverse.

Corollary

Any stabilizer scalar diagram can be decomposed into disconnected segments containing at most two nodes each.

Corollary

When a stabilizer zero diagram is brought into normal form and all scalar subdiagrams are decomposed as in the corollary above, the resulting diagram explicitly contains at least one of:

\[\pi, \quad \frac{\pi}{2}, \quad -\frac{\pi}{2}, \quad \frac{\pi}{2} \]

Will see later that the above zero scalars can all be rewritten into each other, as

\[\begin{bmatrix} \pi/2 \end{bmatrix} = e^{i\pi/4} \begin{bmatrix} \pi/2 \end{bmatrix}. \]
The star node and the star rule

Any non-zero scalar diagram built from disconnected segments containing at most two nodes each represents a number with absolute value greater than 1.

Introduce new node ★ – the *star node* – with $[\text{★}] = 1/2$, and a new rewrite rule – the *star rule*:

\[
\begin{align*}
\text{★} \odot & = \\
\text{★} \odot & =
\end{align*}
\]

Can then derive:

\[
\begin{align*}
\text{★} & = \\
\end{align*}
\]
The star node and the star rule

Any non-zero scalar diagram built from disconnected segments containing at most two nodes each represents a number with absolute value greater than 1.

Introduce new node ★ – the *star node* – with $[★] = 1/2$, and a new rewrite rule – the *star rule*:

\[
★ \circ =
\]

Can then derive:

\[
(★ \circ) \circ =
\]
Outline

Background

Modifying the \(\text{zx} \)-calculus to keep account of scalars

The new completeness results

Conclusions
Completeness for non-zero stabilizer scalars

Theorem
The following is a unique normal form for non-zero stabilizer scalars: take one element of the set

\[
\left\{ \begin{array}{l}
\pi/2, \\
\pi/2, \\
\pi/2, \\
\pi/2, \\
-\pi/2, \\
-\pi/2, \\
\pi, \\
-\pi/2, \\
\pi, \\
\pi, \\
-\pi/2, \\
-\pi/2, \\
\pi, \\
-\pi/2, \\
\pi, \\
-\pi/2,
\end{array} \right.
\]

and combine it with

- some number of copies of \bullet, or
- some number of copies of \star, or
- one copy of \bullet and some number of copies of \star.

Completeness for non-zero stabilizer scalars

Theorem

The following is a unique normal form for non-zero stabilizer scalars: take one element of the set

\[
\left\{ \right. \\
\left. \begin{array}{l}
\frac{\pi}{2}, \\
\frac{\pi}{2}, \\
\frac{\pi}{2}, \\
\frac{\pi}{2}, \\
\frac{-\pi}{2}, \\
\frac{-\pi}{2}, \\
\frac{-\pi}{2}, \\
\frac{-\pi}{2}
\end{array} \right
\}
\]

and combine it with

- some number of copies of \(\bigcirc\), or
- some number of copies of \(\star\), or
- one copy of \(\bigcirc\) and some number of copies of \(\star\).

Non-zero stabilizer scalar diagrams represent complex numbers \(\sqrt{2^r} e^{i s \pi / 4}\) for (possibly negative) integers \(r, s\).
Completeness for non-zero scaled stabilizer diagrams

Theorem

The scaled stabilizer zx-calculus with \blacklozenge and the star rule is complete for non-zero scaled stabilizer diagrams.

Proof.

To derive equalities between non-zero scaled stabilizer diagrams:

▶ Deal with the non-scalar parts of the diagrams as in the scalar-free completeness proof [arXiv:1307.7025], but keep track of the scalars on the side.

▶ If the non-scalar parts are not equal up to scalar, the full diagrams cannot be equal.

▶ If the non-scalar parts are equal, bring the scalar parts into the normal form.

▶ The resulting diagrams are either identical or they do not represent the same matrix.
Completeness for non-zero scaled stabilizer diagrams

Theorem

The scaled stabilizer zx-calculus with \star and the star rule is complete for non-zero scaled stabilizer diagrams.

Proof.

To derive equalities between non-zero scaled stabilizer diagrams:

- Deal with the non-scalar parts of the diagrams as in the scalar-free completeness proof [arXiv:1307.7025], but keep track of the scalars on the side.
Completeness for non-zero scaled stabilizer diagrams

Theorem

The scaled stabilizer ZX-calculus with \dagger and the star rule is complete for non-zero scaled stabilizer diagrams.

Proof.

To derive equalities between non-zero scaled stabilizer diagrams:

- Deal with the non-scalar parts of the diagrams as in the scalar-free completeness proof [arXiv:1307.7025], but keep track of the scalars on the side.
- If the non-scalar parts are not equal up to scalar, the full diagrams cannot be equal.
Completeness for non-zero scaled stabilizer diagrams

Theorem

The scaled stabilizer zx-calculus with \star and the star rule is complete for non-zero scaled stabilizer diagrams.

Proof.

To derive equalities between non-zero scaled stabilizer diagrams:

- Deal with the non-scalar parts of the diagrams as in the scalar-free completeness proof [arXiv:1307.7025], but keep track of the scalars on the side.
- If the non-scalar parts are not equal up to scalar, the full diagrams cannot be equal.
- If the non-scalar parts are equal, bring the scalar parts into the normal form.
Completeness for non-zero scaled stabilizer diagrams

Theorem
The scaled stabilizer \(ZX\)-calculus with ★ and the star rule is complete for non-zero scaled stabilizer diagrams.

Proof.
To derive equalities between non-zero scaled stabilizer diagrams:

▷ Deal with the non-scalar parts of the diagrams as in the scalar-free completeness proof [arXiv:1307.7025], but keep track of the scalars on the side.

▷ If the non-scalar parts are not equal up to scalar, the full diagrams cannot be equal.

▷ If the non-scalar parts are equal, bring the scalar parts into the normal form.

▷ The resulting diagrams are either identical or they do not represent the same matrix.
Stabilizer zero diagrams

New rules: the zero rule [suggested by Aleks Kissinger]:

\[\pi = \pi \]

and the zero scalar rule:

\[\pi \alpha = \pi \]
Stabilizer zero diagrams

New rules: the zero rule [suggested by Aleks Kissinger]:

\[\pi = \pi \]

and the zero scalar rule:

\[\pi \alpha = \pi \]

Theorem

The scaled stabilizer ZX-calculus with the star rule, zero rule, and zero scalar rule is complete for zero diagrams.

Proof.

This is a unique normal form for stabilizer zero diagrams:
Outline

Background

Modifying the zx-calculus to keep account of scalars

The new completeness results

Conclusions
Conclusions and Outlook

- The \textit{zx}-calculus was known to be complete for stabilizer QM without scalars, i.e. equalities between operators could be derived up to scalar factor.

- We have modified the existing rewrite rules, added a new node, and added three new rewrite rules.

- With these, the \textit{zx}-calculus is complete for stabilizer QM with scalars, i.e. can now compute amplitudes and probabilities graphically.

- Can completeness be extended to larger fragment of QM, e.g. Clifford+T group?

Thank you!
Conclusions and Outlook

- The zx-calculus was known to be complete for stabilizer QM without scalars, i.e. equalities between operators could be derived up to scalar factor.
- We have:
 - modified the existing rewrite rules,
Conclusions and Outlook

- The \mathcal{ZX}-calculus was known to be complete for stabilizer QM without scalars, i.e. equalities between operators could be derived up to scalar factor.
- We have:
 - modified the existing rewrite rules,
 - added a new node ★, and
- Can completeness be extended to larger fragment of QM, e.g. Clifford+T group?

Thank you!
Conclusions and Outlook

- The \(\text{zx} \)-calculus was known to be complete for stabilizer QM without scalars, i.e. equalities between operators could be derived up to scalar factor.

- We have:
 - modified the existing rewrite rules,
 - added a new node \(\star \), and
 - added three new rewrite rules.

- Can completeness be extended to larger fragment of QM, e.g. Clifford+T group?

Thank you!
Conclusions and Outlook

- The \(\text{zx}\)-calculus was known to be complete for stabilizer QM without scalars, i.e. equalities between operators could be derived up to scalar factor.

- We have:
 - modified the existing rewrite rules,
 - added a new node \(\bigstar\), and
 - added three new rewrite rules.

- With these, the \(\text{zx}\)-calculus is complete for stabilizer QM with scalars, i.e. can now compute amplitudes and probabilities graphically.

Can completeness be extended to larger fragment of QM, e.g. Clifford+T group?

Thank you!
Conclusions and Outlook

- The zx-calculus was known to be complete for stabilizer QM without scalars, i.e. equalities between operators could be derived up to scalar factor.

- We have:
 - modified the existing rewrite rules,
 - added a new node \star, and
 - added three new rewrite rules.

- With these, the zx-calculus is complete for stabilizer QM with scalars, i.e. can now compute amplitudes and probabilities graphically.

- Can completeness be extended to larger fragment of QM, e.g. Clifford+T group?
Conclusions and Outlook

- The \(\text{zx} \)-calculus was known to be complete for stabilizer QM without scalars, i.e. equalities between operators could be derived up to scalar factor.

- We have:
 - modified the existing rewrite rules,
 - added a new node \(\star \), and
 - added three new rewrite rules.

- With these, the \(\text{zx} \)-calculus is complete for stabilizer QM with scalars, i.e. can now compute amplitudes and probabilities graphically.

- Can completeness be extended to larger fragment of QM, e.g. Clifford+T group?

Thank you!