
DEMONIC Programming

Horsman    Abramsky



Maxwell’s Demon and Landauer’s Hypothesis. 

Thermodynamics in 1 slide. 

A toy model system. 

Defining a programming language for the toy system. 

DEMONIC syntax and semantics. 

Allowed operations expressed in DEMONIC. 

Formal verification: a computational invariant. 

The Second Law and Landauer’s Hypothesis proven.

Outline







O    for    a    muse    of    fire!
Henr/  V;  opening  words



O    for    a    muse    of    fire!
single-particle gas in equilibrium with 
a heat bath at temperature T!



The thermodynamics of computation

“Information is physical” — information processing is necessarily a 
physical process obeying laws of physics.

Thermodynamics: one-way entropy increase, therefore key 
constraints on what and how information can be processed.

The connection between information and entropy/thermodynamics: 
Landauer’s Hypothesis: erasure of 1 bit requires kTln2 of work.

But . . . it has not been proven.



A toy system - thermodynamics 101

Single particle in a box, two pistons, one partition, heat bath T.

S. Abramsky & D. C. Horsman 3

heat bath. The heat bath keeps the entire system at a specific temperature T ; this is a constant and not a
variable. The thermodynamic variables for the system are: pressure of the gas (i.e. the force exerted on
the walls of the box by the continuous motion of the single particle) p, volume occupied by the gas V , and
entropy of the system H. There is a removable partition in the middle of the box, and two pistons (left and
right) which can either compress the gas and input work �W into the system (isothermal compression)
or expand under pressure of the gas thereby extracting work W from the box (isothermal expansion).

There are two fundamental equations of state for the system:

pV
T

= const Hout �Hin = k ln
Vout

Vin

where again k is the Bolzmann constant, and where ‘out’ and ‘in’ refer respectively to output and input
values of parameters for a given transition. The first means that pressure and volume are not independent
at a fixed temperature; only one variable need be specifed. The second equation means that a decrease in
system volume of a half decreases the entropy of the system by k ln2. A doubling of the system volume
increases the entropy by the same amount. In isothermal expansion from volume V ! 2V , the amount of
work done by the gas on the piston is W = kT ln2. In isothermal compression 2V !V , the same amount
of work is input to the gas by the piston.

The entropy S of the system is defined in terms of the probability for the particle position. With a
removable partition, the box is divided into two regions: left and right. This division is considered as
existing even when the partition and pistons are all absent, and the particle occupies both positions with
equal probability. If the particle has a probability of being in the left-hand configuration of pL and a
corresponding right-hand probability pR = 1� pL then H =�k(pL ln pL + pR ln pR). As a consequence,
if the particle has either pL = 0,1 then H = 0. If pL = 1

2 then the entropy of the box is H = k ln2. Note
that the units of entropy are the units of work/temperature.

The Kelvin statement of the second law of thermodynamics says that there exists no allowed transi-
tion that returns the system to its starting configuration, DH = 0, with a net extraction of work, DW > 0.

The box described above has an information-theoretic representation as a two-state system: the par-
ticle can be either on the left or the right, corresponding to ‘0’ and ‘1’ respectively. One bit of data
can therefore be encoded in its position. Landauer’s Erasure Hypothesis conjectures that an erasure
of 1 (qu)bit of information must be paid for by a corresponding increase in entropy of the system of
DH = k ln2. Equivalently, that erasing one bit of information requires work W = kT ln2 to perform.

An erasure operation returns the system to a known state: erasure is not the same as making the
system maximally unknown. Erasure in the box system given here is defined as the process pL ! pL = 1
i.e. the system returns to the particle in the left-hand configuration (bit value 0) with probability 1. This
is sometimes referred to as a ‘reset’ operation.

Landauer and others have conjectured that only the presence of the entropy cost of Landauer Erasure
prevents the second law of thermodynamics being broken in certain transitions embodied in the example
of Maxwell’s Demon. In a system of many particles, which have a distribution of velocities, Maxwell’s
Demon sits at a hole in the partition and observes the speed of particles that are near the hole. It permits
high-velocity ones only into the left and keeps low-velocity ones to the right by opening or shutting a
frictionless cover. Without doing work on the system, then, it creates a temperature gradient that can do
external work before returning to the original configuration, thus violating the second law. By noting
that the Demon must erase its memory to return to its original configuration, Landauer postulated that
the Erasure Hypothesis preserves the second law.

The Norton-Ladyman controversy concerns the existence of Landauer Erasure in the box system
described above, and the status of the second law in respect to its allowed transitions. The arguments are:

Variables: pressure p, volume V, entropy 

S. Abramsky & D. C. Horsman 3

heat bath. The heat bath keeps the entire system at a specific temperature T ; this is a constant and not a
variable. The thermodynamic variables for the system are: pressure of the gas (i.e. the force exerted on
the walls of the box by the continuous motion of the single particle) p, volume occupied by the gas V , and
entropy of the system H. There is a removable partition in the middle of the box, and two pistons (left and
right) which can either compress the gas and input work �W into the system (isothermal compression)
or expand under pressure of the gas thereby extracting work W from the box (isothermal expansion).

There are two fundamental equations of state for the system:

pV
T

= const Hout �Hin = k ln
Vout

Vin

where again k is the Bolzmann constant, and where ‘out’ and ‘in’ refer respectively to output and input
values of parameters for a given transition. The first means that pressure and volume are not independent
at a fixed temperature; only one variable need be specifed. The second equation means that a decrease in
system volume of a half decreases the entropy of the system by k ln2. A doubling of the system volume
increases the entropy by the same amount. In isothermal expansion from volume V ! 2V , the amount of
work done by the gas on the piston is W = kT ln2. In isothermal compression 2V !V , the same amount
of work is input to the gas by the piston.

The entropy S of the system is defined in terms of the probability for the particle position. With a
removable partition, the box is divided into two regions: left and right. This division is considered as
existing even when the partition and pistons are all absent, and the particle occupies both positions with
equal probability. If the particle has a probability of being in the left-hand configuration of pL and a
corresponding right-hand probability pR = 1� pL then H =�k(pL ln pL + pR ln pR). As a consequence,
if the particle has either pL = 0,1 then H = 0. If pL = 1

2 then the entropy of the box is H = k ln2. Note
that the units of entropy are the units of work/temperature.

The Kelvin statement of the second law of thermodynamics says that there exists no allowed transi-
tion that returns the system to its starting configuration, DH = 0, with a net extraction of work, DW > 0.

The box described above has an information-theoretic representation as a two-state system: the par-
ticle can be either on the left or the right, corresponding to ‘0’ and ‘1’ respectively. One bit of data
can therefore be encoded in its position. Landauer’s Erasure Hypothesis conjectures that an erasure
of 1 (qu)bit of information must be paid for by a corresponding increase in entropy of the system of
DH = k ln2. Equivalently, that erasing one bit of information requires work W = kT ln2 to perform.

An erasure operation returns the system to a known state: erasure is not the same as making the
system maximally unknown. Erasure in the box system given here is defined as the process pL ! pL = 1
i.e. the system returns to the particle in the left-hand configuration (bit value 0) with probability 1. This
is sometimes referred to as a ‘reset’ operation.

Landauer and others have conjectured that only the presence of the entropy cost of Landauer Erasure
prevents the second law of thermodynamics being broken in certain transitions embodied in the example
of Maxwell’s Demon. In a system of many particles, which have a distribution of velocities, Maxwell’s
Demon sits at a hole in the partition and observes the speed of particles that are near the hole. It permits
high-velocity ones only into the left and keeps low-velocity ones to the right by opening or shutting a
frictionless cover. Without doing work on the system, then, it creates a temperature gradient that can do
external work before returning to the original configuration, thus violating the second law. By noting
that the Demon must erase its memory to return to its original configuration, Landauer postulated that
the Erasure Hypothesis preserves the second law.

The Norton-Ladyman controversy concerns the existence of Landauer Erasure in the box system
described above, and the status of the second law in respect to its allowed transitions. The arguments are:



A toy system - thermodynamics 101

Allowed operations:

Insert/remove partition



A toy system - thermodynamics 101

Allowed operations:

Insert/remove partition



A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right



A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right



A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right



A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right

(NB isothermal compression: requires work kTln2)



Formalising the system

What we will do: extract out the logical structure of the state and 
allowed transitions into a programming language.

An allowed operation is a function/basic statement not a primitive. 
Allowed programs are built out of allowed statements.

state variable: 

S. Abramsky & D. C. Horsman 5

LProb ::= T := 0 | 1/2 | 1
Part ::= B := true | false
Pist ::= B
WUnit ::= Z
Field ::= LProb | Part | Pist | WUnit
Fieldname ::= X | A | I | w (where W = wkT ln2)
s 2 State ::= (LProb,Part,Pist,WUnit)
BExp ::= B | State.A | State.I
S 2 Statement ::= S1;S2 | S1 �S2 | State.Fieldname := Field

| if BExp then S1 else S2 | skip

Table 1: DEMONIC syntax.

(assign) hx := a, si ) hskip,s[x 7! a]i

(comp1)
hS1, si )p hS01,s0i

hS1;S2, si )p hS01;S2, s0i
(comp2) hskip;S, si ) hS, si

(if1) hif B then S1 else S2, si ) hS1, si if JBKs = true

(if2) hif B then S1 else S2, si ) hS2, si if JBKs = false

(prob1) hS1 �S2, si )1/2 hS1, si
(prob2) hS1 �S2, si )1/2 hS2, si

Table 2: Operational semantics for DEMONIC.

• RPistIn: As LPistIn, only the piston is inserted on the right.

• LPistOut: A piston is removed to the left. If a partition is present then the volume of the gas does
not change. If a partition is absent then the volume of the gas doubles, and the piston extracts work
kT ln2 from the system (isothermal expansion)

• RPistOut: As RPistIn, only the piston is removed on the right.

We formalise the state space of the system as a cartesian product, with typical state variable s:
s = (X ,A, I,w) 2 T⇥B⇥B⇥Z. The field X is defined as the probability for the particle to be in the
left-hand-side of the box, pL. We consider in this present work the simplest possible set of probabilities
for the particle location: either definitely left or right (1 or 0), or else a flat distribution between the
two. Therefore X 2 T := {0, 1

2 ,1}. The cariables A, I report the presence or absence of a partition and
a piston respectively. W = wkT ln2 is as above, the total work extracted from the system; the field w is
an integer owing to the operations we will be allowing later. These values permit the volume of the gas
to be deduced, and also the entropy. An assignment statement for each field given the state is written eg.
s.X := 1

2 assigns the value 1
2 to the X field in state s.

A basic statement in the language is either an assignment statement or a skip. There are three
methods of combining statements: sequential composition, if-then-else statements, and probabilistic
choice, written as S1 �S2.

The full syntax is given in table 1. The operational semantics is given in table 2. The semantics
defines a probabilistic transition system on configurations, which are pairs hS,si, where S is a statement

S. Abramsky & D. C. Horsman 5

LProb ::= T := 0 | 1/2 | 1
Part ::= B := true | false
Pist ::= B
WUnit ::= Z
Field ::= LProb | Part | Pist | WUnit
Fieldname ::= X | A | I | w (where W = wkT ln2)
s 2 State ::= (LProb,Part,Pist,WUnit)
BExp ::= B | State.A | State.I
S 2 Statement ::= S1;S2 | S1 �S2 | State.Fieldname := Field

| if BExp then S1 else S2 | skip

Table 1: DEMONIC syntax.

(assign) hx := a, si ) hskip,s[x 7! a]i

(comp1)
hS1, si )p hS01,s0i

hS1;S2, si )p hS01;S2, s0i
(comp2) hskip;S, si ) hS, si

(if1) hif B then S1 else S2, si ) hS1, si if JBKs = true

(if2) hif B then S1 else S2, si ) hS2, si if JBKs = false

(prob1) hS1 �S2, si )1/2 hS1, si
(prob2) hS1 �S2, si )1/2 hS2, si

Table 2: Operational semantics for DEMONIC.

• RPistIn: As LPistIn, only the piston is inserted on the right.

• LPistOut: A piston is removed to the left. If a partition is present then the volume of the gas does
not change. If a partition is absent then the volume of the gas doubles, and the piston extracts work
kT ln2 from the system (isothermal expansion)

• RPistOut: As RPistIn, only the piston is removed on the right.

We formalise the state space of the system as a cartesian product, with typical state variable s:
s = (X ,A, I,w) 2 T⇥B⇥B⇥Z. The field X is defined as the probability for the particle to be in the
left-hand-side of the box, pL. We consider in this present work the simplest possible set of probabilities
for the particle location: either definitely left or right (1 or 0), or else a flat distribution between the
two. Therefore X 2 T := {0, 1

2 ,1}. The cariables A, I report the presence or absence of a partition and
a piston respectively. W = wkT ln2 is as above, the total work extracted from the system; the field w is
an integer owing to the operations we will be allowing later. These values permit the volume of the gas
to be deduced, and also the entropy. An assignment statement for each field given the state is written eg.
s.X := 1

2 assigns the value 1
2 to the X field in state s.

A basic statement in the language is either an assignment statement or a skip. There are three
methods of combining statements: sequential composition, if-then-else statements, and probabilistic
choice, written as S1 �S2.

The full syntax is given in table 1. The operational semantics is given in table 2. The semantics
defines a probabilistic transition system on configurations, which are pairs hS,si, where S is a statement

                          : prob of being on LHS.

A, I: Boolean flags for partition/a piston.

w: total work extracted from the system in unit of kTln2.



S. Abramsky & D. C. Horsman 5

LProb ::= T := 0 | 1/2 | 1
Part ::= B := true | false
Pist ::= B
WUnit ::= Z
Field ::= LProb | Part | Pist | WUnit
Fieldname ::= X | A | I | w (where W = wkT ln2)
s 2 State ::= (LProb,Part,Pist,WUnit)
BExp ::= B | State.A | State.I
S 2 Statement ::= S1;S2 | S1 �S2 | State.Fieldname := Field

| if BExp then S1 else S2 | skip

Table 1: DEMONIC syntax.

(assign) hx := a, si ) hskip,s[x 7! a]i

(comp1)
hS1, si )p hS01,s0i

hS1;S2, si )p hS01;S2, s0i
(comp2) hskip;S, si ) hS, si

(if1) hif B then S1 else S2, si ) hS1, si if JBKs = true

(if2) hif B then S1 else S2, si ) hS2, si if JBKs = false

(prob1) hS1 �S2, si )1/2 hS1, si
(prob2) hS1 �S2, si )1/2 hS2, si

Table 2: Operational semantics for DEMONIC.

• RPistIn: As LPistIn, only the piston is inserted on the right.

• LPistOut: A piston is removed to the left. If a partition is present then the volume of the gas does
not change. If a partition is absent then the volume of the gas doubles, and the piston extracts work
kT ln2 from the system (isothermal expansion)

• RPistOut: As RPistIn, only the piston is removed on the right.

We formalise the state space of the system as a cartesian product, with typical state variable s:
s = (X ,A, I,w) 2 T⇥B⇥B⇥Z. The field X 2 T := {0, 1

2 ,1} is defined as the probability for the particle
to be in the left-hand-side of the box, pL. A, I report the presence or absence of a partition and a piston
respectively. W = wkT ln2 is as above, the total work extracted from the system; the field w is an integer
owing to the operations we will be allowing later. These values permit the volume of the gas to be
deduced, and also the entropy. An assignment statement for each field given the state is written eg.
s.X := 1

2 assigns the value 1
2 to the X field in state s.

A basic statement in the language is either an assignment statement or a skip. There are three
methods of combining statements: sequential composition, if-then-else statements, and probabilistic
choice, written as S1 �S2.

The full syntax is given in table 1. The operational semantics is given in table 2. The semantics
defines a probabilistic transition system on configurations, which are pairs hS,si, where S is a statement
and s a state, using the standard methods of structural operational semantics [15]. Transitions have the
form hS,si )p hS0,s0i, where p 2 [0,1] is a probability. The final configurations, those of the form

DEMONIC syntax



S. Abramsky & D. C. Horsman 5

LProb ::= T := 0 | 1/2 | 1
Part ::= B := true | false
Pist ::= B
WUnit ::= Z
Field ::= LProb | Part | Pist | WUnit
Fieldname ::= X | A | I | w (where W = wkT ln2)
s 2 State ::= (LProb,Part,Pist,WUnit)
BExp ::= B | State.A | State.I
S 2 Statement ::= S1;S2 | S1 �S2 | State.Fieldname := Field

| if BExp then S1 else S2 | skip

Table 1: DEMONIC syntax.

(assign) hx := a, si ) hskip,s[x 7! a]i

(comp1)
hS1, si )p hS01,s0i

hS1;S2, si )p hS01;S2, s0i
(comp2) hskip;S, si ) hS, si

(if1) hif B then S1 else S2, si ) hS1, si if JBKs = true

(if2) hif B then S1 else S2, si ) hS2, si if JBKs = false

(prob1) hS1 �S2, si )1/2 hS1, si
(prob2) hS1 �S2, si )1/2 hS2, si

Table 2: Operational semantics for DEMONIC.

• RPistIn: As LPistIn, only the piston is inserted on the right.

• LPistOut: A piston is removed to the left. If a partition is present then the volume of the gas does
not change. If a partition is absent then the volume of the gas doubles, and the piston extracts work
kT ln2 from the system (isothermal expansion)

• RPistOut: As RPistIn, only the piston is removed on the right.

We formalise the state space of the system as a cartesian product, with typical state variable s:
s = (X ,A, I,w) 2 T⇥B⇥B⇥Z. The field X 2 T := {0, 1

2 ,1} is defined as the probability for the particle
to be in the left-hand-side of the box, pL. A, I report the presence or absence of a partition and a piston
respectively. W = wkT ln2 is as above, the total work extracted from the system; the field w is an integer
owing to the operations we will be allowing later. These values permit the volume of the gas to be
deduced, and also the entropy. An assignment statement for each field given the state is written eg.
s.X := 1

2 assigns the value 1
2 to the X field in state s.

A basic statement in the language is either an assignment statement or a skip. There are three
methods of combining statements: sequential composition, if-then-else statements, and probabilistic
choice, written as S1 �S2.

The full syntax is given in table 1. The operational semantics is given in table 2. The semantics
defines a probabilistic transition system on configurations, which are pairs hS,si, where S is a statement
and s a state, using the standard methods of structural operational semantics [15]. Transitions have the
form hS,si )p hS0,s0i, where p 2 [0,1] is a probability. The final configurations, those of the form

DEMONIC operational semantics



Allowed thermodynamic operations

Inserting a partition:

6 DEMONIC for single-particle equilibrium thermodynamics

and s a state, using the standard methods of structural operational semantics [15]. Transitions have the
form hS,si )p hS0,s0i, where p 2 [0,1] is a probability. The final configurations, those of the form
hskip,si, have no outgoing transitions; for all other configurations, the probabilities of the outgoing
transitions sum to 1. We use the convention that if the probability label is omitted, the transition occurs
with probability 1.

We shall assume a standard evaluation function, which given a boolean expression B and a state s,
returns a boolean value JBKs. We also use the standard update function on states, s[x 7! a], which given a
state s, a component x and a value of the appropriate type a, updates the x component of s with a, leaving
the other components unchanged. For background on these notations, see e.g. [2].

This is the basic structure of DEMONIC. The language itself does not encode any information about
allowed transitions, or any kind of thermodynamic physical laws. We now turn to how these are defined.

4 Thermodynamic operations

In order to formalise the dynamics and rules of thermodynamics, we now define the basic allowed tran-
sitions, given above, as statements in DEMONIC.

PartIn =de f (s.A := true)
Inserting a partition changes the partition flag variable A to ‘true’, but changes no other state variable.

PartOut =de f if (s.A = true) then
(if (s.I = false) then

(s.X := 1
2) and (s.A := false) else

(s.A := false) )
else skip

Removing a partition does nothing unless the partition is present. In that case, if there is not also a piston,
the particle now has the entire box to be found in (so pl = X = 0.5).

LPistOut =de f if (s.I = false) or ¬(s.X = 0) then
skip else

( if (s.A = true) then
(s.I := false) else

(s.I := false) and (s.X := 1
2) and (s.w := w+1) )

Removing a piston to the left can only be done if there is a piston, and the particle is on the right hand
side. If there is also a partition then no other state variable change. If there is no partition, then isother-
mal expansion occurs by pressure of the particle on the piston, and a unit of work is extracted from the
system as the volume doubles.

RPistOut =de f if (s.I = false) or ¬(s.X = 1) then

skip else
( if (s.A = true) then

(s.I := false) else
(s.I := false) and (s.X := 1

2) and (s.w := w+1) )
Removing a piston to the right is by symmetry with removing to the left.

6 DEMONIC for single-particle equilibrium thermodynamics

and s a state, using the standard methods of structural operational semantics [15]. Transitions have the
form hS,si )p hS0,s0i, where p 2 [0,1] is a probability. The final configurations, those of the form
hskip,si, have no outgoing transitions; for all other configurations, the probabilities of the outgoing
transitions sum to 1. We use the convention that if the probability label is omitted, the transition occurs
with probability 1.

We shall assume a standard evaluation function, which given a boolean expression B and a state s,
returns a boolean value JBKs. We also use the standard update function on states, s[x 7! a], which given a
state s, a component x and a value of the appropriate type a, updates the x component of s with a, leaving
the other components unchanged. For background on these notations, see e.g. [2].

This is the basic structure of DEMONIC. The language itself does not encode any information about
allowed transitions, or any kind of thermodynamic physical laws. We now turn to how these are defined.

4 Thermodynamic operations

In order to formalise the dynamics and rules of thermodynamics, we now define the basic allowed tran-
sitions, given above, as statements in DEMONIC.

PartIn =de f (s.A := true)
Inserting a partition changes the partition flag variable A to ‘true’, but changes no other state variable.

PartOut =de f if (s.A = true) then
(if (s.I = false) then

(s.X := 1
2) and (s.A := false) else

(s.A := false) )
else skip

Removing a partition does nothing unless the partition is present. In that case, if there is not also a piston,
the particle now has the entire box to be found in (so pl = X = 0.5).

LPistOut =de f if (s.I = false) or ¬(s.X = 0) then
skip else

( if (s.A = true) then
(s.I := false) else

(s.I := false) and (s.X := 1
2) and (s.w := w+1) )

Removing a piston to the left can only be done if there is a piston, and the particle is on the right hand
side. If there is also a partition then no other state variable change. If there is no partition, then isother-
mal expansion occurs by pressure of the particle on the piston, and a unit of work is extracted from the
system as the volume doubles.

RPistOut =de f if (s.I = false) or ¬(s.X = 1) then

skip else
( if (s.A = true) then

(s.I := false) else
(s.I := false) and (s.X := 1

2) and (s.w := w+1) )
Removing a piston to the right is by symmetry with removing to the left.

Removing a partition:



Allowed thermodynamic operations

Removing a piston (left and right)

6 DEMONIC for single-particle equilibrium thermodynamics

and s a state, using the standard methods of structural operational semantics [15]. Transitions have the
form hS,si )p hS0,s0i, where p 2 [0,1] is a probability. The final configurations, those of the form
hskip,si, have no outgoing transitions; for all other configurations, the probabilities of the outgoing
transitions sum to 1. We use the convention that if the probability label is omitted, the transition occurs
with probability 1.

We shall assume a standard evaluation function, which given a boolean expression B and a state s,
returns a boolean value JBKs. We also use the standard update function on states, s[x 7! a], which given a
state s, a component x and a value of the appropriate type a, updates the x component of s with a, leaving
the other components unchanged. For background on these notations, see e.g. [2].

This is the basic structure of DEMONIC. The language itself does not encode any information about
allowed transitions, or any kind of thermodynamic physical laws. We now turn to how these are defined.

4 Thermodynamic operations

In order to formalise the dynamics and rules of thermodynamics, we now define the basic allowed tran-
sitions, given above, as statements in DEMONIC.

PartIn =de f (s.A := true)
Inserting a partition changes the partition flag variable A to ‘true’, but changes no other state variable.

PartOut =de f if (s.A = true) then
(if (s.I = false) then

(s.X := 1
2) and (s.A := false) else

(s.A := false) )
else skip

Removing a partition does nothing unless the partition is present. In that case, if there is not also a piston,
the particle now has the entire box to be found in (so pl = X = 0.5).

LPistOut =de f if (s.I = false) or ¬(s.X = 0) then
skip else

( if (s.A = true) then
(s.I := false) else

(s.I := false) and (s.X := 1
2) and (s.w := w+1) )

Removing a piston to the left can only be done if there is a piston, and the particle is on the right hand
side. If there is also a partition then no other state variable change. If there is no partition, then isother-
mal expansion occurs by pressure of the particle on the piston, and a unit of work is extracted from the
system as the volume doubles.

RPistOut =de f if (s.I = false) or ¬(s.X = 1) then

skip else
( if (s.A = true) then

(s.I := false) else
(s.I := false) and (s.X := 1

2) and (s.w := w+1) )
Removing a piston to the right is by symmetry with removing to the left.

6 DEMONIC for single-particle equilibrium thermodynamics

and s a state, using the standard methods of structural operational semantics [15]. Transitions have the
form hS,si )p hS0,s0i, where p 2 [0,1] is a probability. The final configurations, those of the form
hskip,si, have no outgoing transitions; for all other configurations, the probabilities of the outgoing
transitions sum to 1. We use the convention that if the probability label is omitted, the transition occurs
with probability 1.

We shall assume a standard evaluation function, which given a boolean expression B and a state s,
returns a boolean value JBKs. We also use the standard update function on states, s[x 7! a], which given a
state s, a component x and a value of the appropriate type a, updates the x component of s with a, leaving
the other components unchanged. For background on these notations, see e.g. [2].

This is the basic structure of DEMONIC. The language itself does not encode any information about
allowed transitions, or any kind of thermodynamic physical laws. We now turn to how these are defined.

4 Thermodynamic operations

In order to formalise the dynamics and rules of thermodynamics, we now define the basic allowed tran-
sitions, given above, as statements in DEMONIC.

PartIn =de f (s.A := true)
Inserting a partition changes the partition flag variable A to ‘true’, but changes no other state variable.

PartOut =de f if (s.A = true) then
(if (s.I = false) then

(s.X := 1
2) and (s.A := false) else

(s.A := false) )
else skip

Removing a partition does nothing unless the partition is present. In that case, if there is not also a piston,
the particle now has the entire box to be found in (so pl = X = 0.5).

LPistOut =de f if (s.I = false) or ¬(s.X = 0) then
skip else

( if (s.A = true) then
(s.I := false) else

(s.I := false) and (s.X := 1
2) and (s.w := w+1) )

Removing a piston to the left can only be done if there is a piston, and the particle is on the right hand
side. If there is also a partition then no other state variable change. If there is no partition, then isother-
mal expansion occurs by pressure of the particle on the piston, and a unit of work is extracted from the
system as the volume doubles.

RPistOut =de f if (s.I = false) or ¬(s.X = 1) then

skip else
( if (s.A = true) then

(s.I := false) else
(s.I := false) and (s.X := 1

2) and (s.w := w+1) )
Removing a piston to the right is by symmetry with removing to the left.



Allowed thermodynamic operations

Inserting a piston is more complicated…

Can we insert a piston to the right?  
No! Would compress to zero volume, requiring infinite work. 
But for a programming language we have to give the outcome if it 
were attempted.



Allowed thermodynamic operations

Consider this cycle

8 DEMONIC for single-particle equilibrium thermodynamics

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, T, w0)i
=) hLPistOut, (0, F, T, w0)i
=) hskip, (1

2 , F, F, w0 +1)i

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, F, w0 �wc)i
=) hLPistOut, (1

2 , F, F, w0 �wc)i
=) hskip, (1

2 , F, F, w0 �wc)i

The expected amount of work extracted by the end of this cycle is the weighted sum of the two work
outcomes, We = (w0 +

1
2(1�wc))kT ln2. To preserve the second law we require We  Wo, i.e. wc � 1.

We now make the choice that the set of transitions given by Cycle not only preserves the second law,
but does not require the input of work. Given this choice, wc = 1. The full statements for LPistIn and
RPistIn are then

LPistIn =de f if (s.X = 1) then
(s.w := w�1) else

( if (s.X = 0) then
(s.I := true) else

( if (s.A = false) then
(s.X := 1) and (s.w := w�1) and (s.I := true) else

[(s.X := 0) and (s.I := true)]� [(s.X := 1) and (s.w := w�1)]))

RPistIn =de f if (s.X = 0) then
(s.w := w�1) else

( if (s.X = 1) then
(s.I := true) else

( if (s.A = false) then
(s.X := 0) and (s.w := w�1) and (s.I := true) else

[(s.X := 1) and (s.I := true)]� [(s.X := 0) and (s.w := w�1)]))

5 The second law is an invariant of the system

We have a full specification of the basic allowed operations within single-particle thermodynamics, in
our computational language. The task now is to prove that any composition of these basic statements
(PartOut etc.) within DEMONIC will satisfy the second law; that is, that the basic operations can be used
to reason about violations of the second law without themselves violating it.

Expected work extracted: 

8 DEMONIC for single-particle equilibrium thermodynamics

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, T, w0)i
=) hLPistOut, (0, F, T, w0)i
=) hskip, (1

2 , F, F, w0 +1)i

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, F, w0 �wc)i
=) hLPistOut, (1

2 , F, F, w0 �wc)i
=) hskip, (1

2 , F, F, w0 �wc)i

The expected amount of work extracted by the end of this cycle is the weighted sum of the two work
outcomes, We = (w0 +

1
2(1�wc))kT ln2. To preserve the second law we require We  Wo, i.e. wc � 1.

We now make the choice that the set of transitions given by Cycle not only preserves the second law,
but does not require the input of work. Given this choice, wc = 1. The full statements for LPistIn and
RPistIn are then

LPistIn =de f if (s.X = 1) then
(s.w := w�1) else

( if (s.X = 0) then
(s.I := true) else

( if (s.A = false) then
(s.X := 1) and (s.w := w�1) and (s.I := true) else

[(s.X := 0) and (s.I := true)]� [(s.X := 1) and (s.w := w�1)]))

RPistIn =de f if (s.X = 0) then
(s.w := w�1) else

( if (s.X = 1) then
(s.I := true) else

( if (s.A = false) then
(s.X := 0) and (s.w := w�1) and (s.I := true) else

[(s.X := 1) and (s.I := true)]� [(s.X := 0) and (s.w := w�1)]))

5 The second law is an invariant of the system

We have a full specification of the basic allowed operations within single-particle thermodynamics, in
our computational language. The task now is to prove that any composition of these basic statements
(PartOut etc.) within DEMONIC will satisfy the second law; that is, that the basic operations can be used
to reason about violations of the second law without themselves violating it.

8 DEMONIC for single-particle equilibrium thermodynamics

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, T, w0)i
=) hLPistOut, (0, F, T, w0)i
=) hskip, (1

2 , F, F, w0 +1)i

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, F, w0 �wc)i
=) hLPistOut, (1

2 , F, F, w0 �wc)i
=) hskip, (1

2 , F, F, w0 �wc)i

The expected amount of work extracted by the end of this cycle is the weighted sum of the two work
outcomes, We = (w0 +

1
2(1�wc))kT ln2. To preserve the second law we require We  Wo, i.e. wc � 1.

We now make the choice that the set of transitions given by Cycle not only preserves the second law,
but does not require the input of work. Given this choice, wc = 1. The full statements for LPistIn and
RPistIn are then

LPistIn =de f if (s.X = 1) then
(s.w := w�1) else

( if (s.X = 0) then
(s.I := true) else

( if (s.A = false) then
(s.X := 1) and (s.w := w�1) and (s.I := true) else

[(s.X := 0) and (s.I := true)]� [(s.X := 1) and (s.w := w�1)]))

RPistIn =de f if (s.X = 0) then
(s.w := w�1) else

( if (s.X = 1) then
(s.I := true) else

( if (s.A = false) then
(s.X := 0) and (s.w := w�1) and (s.I := true) else

[(s.X := 1) and (s.I := true)]� [(s.X := 0) and (s.w := w�1)]))

5 The second law is an invariant of the system

We have a full specification of the basic allowed operations within single-particle thermodynamics, in
our computational language. The task now is to prove that any composition of these basic statements
(PartOut etc.) within DEMONIC will satisfy the second law; that is, that the basic operations can be used
to reason about violations of the second law without themselves violating it.

No perpetual motion implies



Allowed thermodynamic operations

Therefore…

8 DEMONIC for single-particle equilibrium thermodynamics

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, T, w0)i
=) hLPistOut, (0, F, T, w0)i
=) hskip, (1

2 , F, F, w0 +1)i

hPartIn;LPistIn;PartOut;LPistOut, (1
2 , F, F, w0)i

=) hLPistIn;PartOut;LPistOut, (1
2 , T, F, w0)i

=)1/2 hPartOut;LPistOut, (0, T, F, w0 �wc)i
=) hLPistOut, (1

2 , F, F, w0 �wc)i
=) hskip, (1

2 , F, F, w0 �wc)i

The expected amount of work extracted by the end of this cycle is the weighted sum of the two work
outcomes, We = (w0 +

1
2(1�wc))kT ln2. To preserve the second law we require We  Wo, i.e. wc � 1.

We now make the choice that the set of transitions given by Cycle not only preserves the second law,
but does not require the input of work. Given this choice, wc = 1. The full statements for LPistIn and
RPistIn are then

LPistIn =de f if (s.X = 1) then
(s.w := w�1) else

( if (s.X = 0) then
(s.I := true) else

( if (s.A = false) then
(s.X := 1) and (s.w := w�1) and (s.I := true) else

[(s.X := 0) and (s.I := true)]� [(s.X := 1) and (s.w := w�1)]))

RPistIn =de f if (s.X = 0) then
(s.w := w�1) else

( if (s.X = 1) then
(s.I := true) else

( if (s.A = false) then
(s.X := 0) and (s.w := w�1) and (s.I := true) else

[(s.X := 1) and (s.I := true)]� [(s.X := 0) and (s.w := w�1)]))

5 The second law is an invariant of the system

We have a full specification of the basic allowed operations within single-particle thermodynamics, in
our computational language. The task now is to prove that any composition of these basic statements
(PartOut etc.) within DEMONIC will satisfy the second law; that is, that the basic operations can be used
to reason about violations of the second law without themselves violating it.



Computational Invariant Statement

Probabilistic computational invariants are given over the set of 
probability distributions over states.

This is easy for a physicist: expectation values!

An invariant statement is a predicate that is true after a transition if 
it is true before, and preserved under composition.

What is the invariant statement for this single-particle system…?



Computational Invariant Statement

What is that entropic quantity???

S. Abramsky & D. C. Horsman 9

We shall now provide a general setting for proving that certain properties are invariants of a class
of thermodynamic processes, which we will then go on to apply to the second law. Firstly, we write
D(State) for the set of probability distributions of finite support on the set State of states. A statement
S induces a map tS : State! D(State):

tS(s)(s0) := Â{p | 9S0.hS,si )p hS0,s0i}

This lifts to a map D(State)! D(State) using the Kleisli extension of the distribution monad [1]. We
also write tS for this lifted map.

Now let P be a predicate P ✓ D(State). We say that P is an S-invariant if for all distributions
d 2 D(State):

d 2 P ) tS(d) 2 P.

Let L be a set of statements defining a class of thermodynamic processes. We say that P is an L -
invariant if it is an S-invariant for every S in L . We shall be interested in proving L -invariance where
L is the closure under sequential composition of the set of basic thermodynamic processes defined in
the previous section.

As an example of the kind of predicate we may consider, we have P(d) ⌘ hXi  0, where hXi :=
Âs2State d(s)s.X , the expected value of the X-component of the state in the distribution d.

A computational invariant for the basic transitions is therefore a statement that is true after each
transition if it is true before, and which is also preserved through composition. Using the definition
for entropy of a variable x, H(x) = �kT (x lnx+(1� x) ln(1� x)), we show in the Appendix that the
following is a (probabilistic) computational invariant for the basic transitions defined above:

hwk ln2i� 1
2
(hH(X)i+H(hXi)) 0 (1)

Every sequence of basic transitions will satisfy this inequality at every step if it satisfies it at the start.
Written for the DEMONIC system, the second law becomes a statement disallowing certain sequences

of transitions g:

Kelvin statement of the second law: 6 9g : (X0, A0, I0, w0)
g�! (X0, A0, I0, hw f i> w0).

The variable w counts the work extracted from the system, and is transparent to the addition or subtraction
of a constant. The initial counter for the work extracted can therefore be set to an arbitrary number, as
long as the rest of the cycle counts from that number. We define the zero-point of the work counter to be

w0 =
1

2k ln2
(hH(X0)i+H(hX0i)) (2)

This satisfies the invariant statement with an equality. After any sequence of transitions that return the
system to the original configuration, the invariant states that hw f ik ln2� 1

2 (hH(X0)i+H(hX0i))  0,
which straightforwardly implies hw f i  w0. The second law in its Kelvin formulation is then a theorem
of any system whose statements satisfy the computational invariant (1). The basic transitions (PartIn,
PartOut, LPistIn, LPistOut, RPistIn, RPistOut) satisfy the invariant; therefore any sequence of these
operations cannot violate the second law.

Every composition of the allowed thermodynamic operations 
satisfies this invariant afterwards if it satisfies it beforehand.

S. Abramsky & D. C. Horsman 9

We shall now provide a general setting for proving that certain properties are invariants of a class
of thermodynamic processes, which we will then go on to apply to the second law. Firstly, we write
D(State) for the set of probability distributions of finite support on the set State of states. A statement
S induces a map tS : State! D(State):

tS(s)(s0) := Â{p | 9S0.hS,si )p hS0,s0i}

This lifts to a map D(State)! D(State) using the Kleisli extension of the distribution monad [1]. We
also write tS for this lifted map.

Now let P be a predicate P ✓ D(State). We say that P is an S-invariant if for all distributions
d 2 D(State):

d 2 P ) tS(d) 2 P.

Let L be a set of statements defining a class of thermodynamic processes. We say that P is an L -
invariant if it is an S-invariant for every S in L . We shall be interested in proving L -invariance where
L is the closure under sequential composition of the set of basic thermodynamic processes defined in
the previous section.

As an example of the kind of predicate we may consider, we have P(d) ⌘ hXi  0, where hXi :=
Âs2State d(s)s.X , the expected value of the X-component of the state in the distribution d.

A computational invariant for the basic transitions is therefore a statement that is true after each
transition if it is true before, and which is also preserved through composition. Using the definition
for entropy of a variable x, H(x) = �kT (x lnx+(1� x) ln(1� x)), we show in the Appendix that the
following is a (probabilistic) computational invariant for the basic transitions defined above:

hwk ln2i� 1
2
(hH(X)i+H(hXi)) 0 (1)

Every sequence of basic transitions will satisfy this inequality at every step if it satisfies it at the start.
Written for the DEMONIC system, the second law becomes a statement disallowing certain sequences

of transitions g:

Kelvin statement of the second law: 6 9g : (X0, A0, I0, w0)
g�! (X0, A0, I0, hw f i> w0).

The variable w counts the work extracted from the system, and is transparent to the addition or subtraction
of a constant. The initial counter for the work extracted can therefore be set to an arbitrary number, as
long as the rest of the cycle counts from that number. We define the zero-point of the work counter to be

w0 =
1

2k ln2
(hH(X0)i+H(hX0i)) (2)

This satisfies the invariant statement with an equality. After any sequence of transitions that return the
system to the original configuration, the invariant states that hw f ik ln2� 1

2 (hH(X0)i+H(hX0i))  0,
which straightforwardly implies hw f i  w0. The second law in its Kelvin formulation is then a theorem
of any system whose statements satisfy the computational invariant (1). The basic transitions (PartIn,
PartOut, LPistIn, LPistOut, RPistIn, RPistOut) satisfy the invariant; therefore any sequence of these
operations cannot violate the second law.

Where



The Second Law is a theorem of the system

S. Abramsky & D. C. Horsman 9

We shall now provide a general setting for proving that certain properties are invariants of a class
of thermodynamic processes, which we will then go on to apply to the second law. Firstly, we write
D(State) for the set of probability distributions of finite support on the set State of states. A statement
S induces a map tS : State! D(State):

tS(s)(s0) := Â{p | 9S0.hS,si )p hS0,s0i}

This lifts to a map D(State)! D(State) using the Kleisli extension of the distribution monad [1]. We
also write tS for this lifted map.

Now let P be a predicate P ✓ D(State). We say that P is an S-invariant if for all distributions
d 2 D(State):

d 2 P ) tS(d) 2 P.

Let L be a set of statements defining a class of thermodynamic processes. We say that P is an L -
invariant if it is an S-invariant for every S in L . We shall be interested in proving L -invariance where
L is the closure under sequential composition of the set of basic thermodynamic processes defined in
the previous section.

As an example of the kind of predicate we may consider, we have P(d) ⌘ hXi  0, where hXi :=
Âs2State d(s)s.X , the expected value of the X-component of the state in the distribution d.

A computational invariant for the basic transitions is therefore a statement that is true after each
transition if it is true before, and which is also preserved through composition. Using the definition
for entropy of a variable x, H(x) = �kT (x lnx+(1� x) ln(1� x)), we show in the Appendix that the
following is a (probabilistic) computational invariant for the basic transitions defined above:

hwk ln2i� 1
2
(hH(X)i+H(hXi)) 0 (1)

Every sequence of basic transitions will satisfy this inequality at every step if it satisfies it at the start.
Written for the DEMONIC system, the second law becomes a statement disallowing certain sequences

of transitions g:

Kelvin statement of the second law: 6 9g : (X0, A0, I0, w0)
g�! (X0, A0, I0, hw f i> w0).

The variable w counts the work extracted from the system, and is transparent to the addition or subtraction
of a constant. The initial counter for the work extracted can therefore be set to an arbitrary number, as
long as the rest of the cycle counts from that number. We define the zero-point of the work counter to be

w0 =
1

2k ln2
(hH(X0)i+H(hX0i)) (2)

This satisfies the invariant statement with an equality. After any sequence of transitions that return the
system to the original configuration, the invariant states that hw f ik ln2� 1

2 (hH(X0)i+H(hX0i))  0,
which straightforwardly implies hw f i  w0. The second law in its Kelvin formulation is then a theorem
of any system whose statements satisfy the computational invariant (1). The basic transitions (PartIn,
PartOut, LPistIn, LPistOut, RPistIn, RPistOut) satisfy the invariant; therefore any sequence of these
operations cannot violate the second law.

S. Abramsky & D. C. Horsman 9

We shall now provide a general setting for proving that certain properties are invariants of a class
of thermodynamic processes, which we will then go on to apply to the second law. Firstly, we write
D(State) for the set of probability distributions of finite support on the set State of states. A statement
S induces a map tS : State! D(State):

tS(s)(s0) := Â{p | 9S0.hS,si )p hS0,s0i}

This lifts to a map D(State)! D(State) using the Kleisli extension of the distribution monad [1]. We
also write tS for this lifted map.

Now let P be a predicate P ✓ D(State). We say that P is an S-invariant if for all distributions
d 2 D(State):

d 2 P ) tS(d) 2 P.

Let L be a set of statements defining a class of thermodynamic processes. We say that P is an L -
invariant if it is an S-invariant for every S in L . We shall be interested in proving L -invariance where
L is the closure under sequential composition of the set of basic thermodynamic processes defined in
the previous section.

As an example of the kind of predicate we may consider, we have P(d) ⌘ hXi  0, where hXi :=
Âs2State d(s)s.X , the expected value of the X-component of the state in the distribution d.

A computational invariant for the basic transitions is therefore a statement that is true after each
transition if it is true before, and which is also preserved through composition. Using the definition
for entropy of a variable x, H(x) = �kT (x lnx+(1� x) ln(1� x)), we show in the Appendix that the
following is a (probabilistic) computational invariant for the basic transitions defined above:

hwk ln2i� 1
2
(hH(X)i+H(hXi)) 0 (1)

Every sequence of basic transitions will satisfy this inequality at every step if it satisfies it at the start.
Written for the DEMONIC system, the second law becomes a statement disallowing certain sequences

of transitions g:

Kelvin statement of the second law: 6 9g : (X0, A0, I0, w0)
g�! (X0, A0, I0, hw f i> w0).

The variable w counts the work extracted from the system, and is transparent to the addition or subtraction
of a constant. The initial counter for the work extracted can therefore be set to an arbitrary number, as
long as the rest of the cycle counts from that number. We define the zero-point of the work counter to be

w0 =
1

2k ln2
(hH(X0)i+H(hX0i)) (2)

This satisfies the invariant statement with an equality. After any sequence of transitions that return the
system to the original configuration, the invariant states that hw f ik ln2� 1

2 (hH(X0)i+H(hX0i))  0,
which straightforwardly implies hw f i  w0. The second law in its Kelvin formulation is then a theorem
of any system whose statements satisfy the computational invariant (1). The basic transitions (PartIn,
PartOut, LPistIn, LPistOut, RPistIn, RPistOut) satisfy the invariant; therefore any sequence of these
operations cannot violate the second law.

Define the zero-point of the work counter as

S. Abramsky & D. C. Horsman 9

We shall now provide a general setting for proving that certain properties are invariants of a class
of thermodynamic processes, which we will then go on to apply to the second law. Firstly, we write
D(State) for the set of probability distributions of finite support on the set State of states. A statement
S induces a map tS : State! D(State):

tS(s)(s0) := Â{p | 9S0.hS,si )p hS0,s0i}

This lifts to a map D(State)! D(State) using the Kleisli extension of the distribution monad [1]. We
also write tS for this lifted map.

Now let P be a predicate P ✓ D(State). We say that P is an S-invariant if for all distributions
d 2 D(State):

d 2 P ) tS(d) 2 P.

Let L be a set of statements defining a class of thermodynamic processes. We say that P is an L -
invariant if it is an S-invariant for every S in L . We shall be interested in proving L -invariance where
L is the closure under sequential composition of the set of basic thermodynamic processes defined in
the previous section.

As an example of the kind of predicate we may consider, we have P(d) ⌘ hXi  0, where hXi :=
Âs2State d(s)s.X , the expected value of the X-component of the state in the distribution d.

A computational invariant for the basic transitions is therefore a statement that is true after each
transition if it is true before, and which is also preserved through composition. Using the definition
for entropy of a variable x, H(x) = �kT (x lnx+(1� x) ln(1� x)), we show in the Appendix that the
following is a (probabilistic) computational invariant for the basic transitions defined above:

hwk ln2i� 1
2
(hH(X)i+H(hXi)) 0 (1)

Every sequence of basic transitions will satisfy this inequality at every step if it satisfies it at the start.
Written for the DEMONIC system, the second law becomes a statement disallowing certain sequences

of transitions g:

Kelvin statement of the second law: 6 9g : (X0, A0, I0, w0)
g�! (X0, A0, I0, hw f i> w0).

The variable w counts the work extracted from the system, and is transparent to the addition or subtraction
of a constant. The initial counter for the work extracted can therefore be set to an arbitrary number, as
long as the rest of the cycle counts from that number. We define the zero-point of the work counter to be

w0 =
1

2k ln2
(hH(X0)i+H(hX0i)) (2)

This satisfies the invariant statement with an equality. After any sequence of transitions that return the
system to the original configuration, the invariant states that hw f ik ln2� 1

2 (hH(X0)i+H(hX0i))  0,
which straightforwardly implies hw f i  w0. The second law in its Kelvin formulation is then a theorem
of any system whose statements satisfy the computational invariant (1). The basic transitions (PartIn,
PartOut, LPistIn, LPistOut, RPistIn, RPistOut) satisfy the invariant; therefore any sequence of these
operations cannot violate the second law.

then the invariant is satisfied initially. Final invariant gives

which straightforwardly implies

S. Abramsky & D. C. Horsman 9

We shall now provide a general setting for proving that certain properties are invariants of a class
of thermodynamic processes, which we will then go on to apply to the second law. Firstly, we write
D(State) for the set of probability distributions of finite support on the set State of states. A statement
S induces a map tS : State! D(State):

tS(s)(s0) := Â{p | 9S0.hS,si )p hS0,s0i}

This lifts to a map D(State)! D(State) using the Kleisli extension of the distribution monad [1]. We
also write tS for this lifted map.

Now let P be a predicate P ✓ D(State). We say that P is an S-invariant if for all distributions
d 2 D(State):

d 2 P ) tS(d) 2 P.

Let L be a set of statements defining a class of thermodynamic processes. We say that P is an L -
invariant if it is an S-invariant for every S in L . We shall be interested in proving L -invariance where
L is the closure under sequential composition of the set of basic thermodynamic processes defined in
the previous section.

As an example of the kind of predicate we may consider, we have P(d) ⌘ hXi  0, where hXi :=
Âs2State d(s)s.X , the expected value of the X-component of the state in the distribution d.

A computational invariant for the basic transitions is therefore a statement that is true after each
transition if it is true before, and which is also preserved through composition. Using the definition
for entropy of a variable x, H(x) = �kT (x lnx+(1� x) ln(1� x)), we show in the Appendix that the
following is a (probabilistic) computational invariant for the basic transitions defined above:

hwk ln2i� 1
2
(hH(X)i+H(hXi)) 0 (1)

Every sequence of basic transitions will satisfy this inequality at every step if it satisfies it at the start.
Written for the DEMONIC system, the second law becomes a statement disallowing certain sequences

of transitions g:

Kelvin statement of the second law: 6 9g : (X0, A0, I0, w0)
g�! (X0, A0, I0, hw f i> w0).

The variable w counts the work extracted from the system, and is transparent to the addition or subtraction
of a constant. The initial counter for the work extracted can therefore be set to an arbitrary number, as
long as the rest of the cycle counts from that number. We define the zero-point of the work counter to be

w0 =
1

2k ln2
(hH(X0)i+H(hX0i)) (2)

This satisfies the invariant statement with an equality. After any sequence of transitions that return the
system to the original configuration, the invariant states that hw f ik ln2� 1

2 (hH(X0)i+H(hX0i))  0,
which straightforwardly implies hw f i  w0. The second law in its Kelvin formulation is then a theorem
of any system whose statements satisfy the computational invariant (1). The basic transitions (PartIn,
PartOut, LPistIn, LPistOut, RPistIn, RPistOut) satisfy the invariant; therefore any sequence of these
operations cannot violate the second law.

for all allowed operations and compositions



Landauer Erasure

Two entropies make up the invariant entropy:

<H(X)>: average entropy within a branch of the computation.

H(<X>): entropy of the probability distribution of the 
computation (across all its branches).

Consider X=1/2, partition=true. <H(X)>=H(<X>)=kln2.

Measurement gives in two branches, X=0 and X=1. 
<H(X)>=0 but H(<X>)=kln2 still.

Resetting the result to a known state gives one branch, eg. X=0. 
<H(X)>=0 and H(<X>)=0.



Landauer Erasure

Given the invariant 

Measurement of a bit of information requires at least

Resetting of a measured bit of information requires at least

S. Abramsky & D. C. Horsman 9

We shall now provide a general setting for proving that certain properties are invariants of a class
of thermodynamic processes, which we will then go on to apply to the second law. Firstly, we write
D(State) for the set of probability distributions of finite support on the set State of states. A statement
S induces a map tS : State! D(State):

tS(s)(s0) := Â{p | 9S0.hS,si )p hS0,s0i}

This lifts to a map D(State)! D(State) using the Kleisli extension of the distribution monad [1]. We
also write tS for this lifted map.

Now let P be a predicate P ✓ D(State). We say that P is an S-invariant if for all distributions
d 2 D(State):

d 2 P ) tS(d) 2 P.

Let L be a set of statements defining a class of thermodynamic processes. We say that P is an L -
invariant if it is an S-invariant for every S in L . We shall be interested in proving L -invariance where
L is the closure under sequential composition of the set of basic thermodynamic processes defined in
the previous section.

As an example of the kind of predicate we may consider, we have P(d) ⌘ hXi  0, where hXi :=
Âs2State d(s)s.X , the expected value of the X-component of the state in the distribution d.

A computational invariant for the basic transitions is therefore a statement that is true after each
transition if it is true before, and which is also preserved through composition. Using the definition
for entropy of a variable x, H(x) = �kT (x lnx+(1� x) ln(1� x)), we show in the Appendix that the
following is a (probabilistic) computational invariant for the basic transitions defined above:

hwk ln2i� 1
2
(hH(X)i+H(hXi)) 0 (1)

Every sequence of basic transitions will satisfy this inequality at every step if it satisfies it at the start.
Written for the DEMONIC system, the second law becomes a statement disallowing certain sequences

of transitions g:

Kelvin statement of the second law: 6 9g : (X0, A0, I0, w0)
g�! (X0, A0, I0, hw f i> w0).

The variable w counts the work extracted from the system, and is transparent to the addition or subtraction
of a constant. The initial counter for the work extracted can therefore be set to an arbitrary number, as
long as the rest of the cycle counts from that number. We define the zero-point of the work counter to be

w0 =
1

2k ln2
(hH(X0)i+H(hX0i)) (2)

This satisfies the invariant statement with an equality. After any sequence of transitions that return the
system to the original configuration, the invariant states that hw f ik ln2� 1

2 (hH(X0)i+H(hX0i))  0,
which straightforwardly implies hw f i  w0. The second law in its Kelvin formulation is then a theorem
of any system whose statements satisfy the computational invariant (1). The basic transitions (PartIn,
PartOut, LPistIn, LPistOut, RPistIn, RPistOut) satisfy the invariant; therefore any sequence of these
operations cannot violate the second law.

S. Abramsky & D. C. Horsman 11

that motivated the introduction of the language in the first place, and show that Landauer Erasure is also
a necessary property of the system.

Key to understanding where this comes from is the invariant statement (1). Considering the two en-
tropy quantities, we can describe them in terms of the different branches of the probabilistic computation.
hH(X)i is the average entropy within a single branch of a computation, averaged across all branches, and
H(hXi) is the entropy of the distribution over all branches of the computation.

A simple way of intutitively distinguishing these quantities is to consider the case where X = 1
2 and

there is a partition, A = T . After a measurement of the particle position there will be two computational
branches, in one of which X = 0 and the other X = 1. Before the measurement hH(X)i=H(hXi) = k ln2.
After the measurement hH(X)i is now zero; however, H(hXi) remains k ln2. If a further operation is
performed that sends the X = 0 state to X = 1, then both entropy quantities will now be zero.

We have seen previously one example of a measurement operation within this system: applying a
piston to a box with a partition in it. Whether the piston can in fact be inserted is a measurement of the
position. If the position was uncertain beforehand, then the computation branches, with two possibilities
for the two definite outcomes. This is measurement within this system: the probability distribution for the
particle position beforehand then becomes the probability distribution over branches, in each of which
the particle has a definite position, X = 0,1. We can therefore define the action of measurement on the
entropic quantities. Using the notation ‘!’ to mean the effect of the operation on a particular variable,
then a measurement operation takes hH(X)i ! 0 but leaves H(hXi) unchanged.

Now we come to erasure. Erasure is the operation of returning the system to the definite known X
state X = 1. If we write the erasure operation as e : (X0, A0, I0, w0) �! (X = 1, A f , I f , w f ). There
may be multiple branches to this computation, but in all of them X = 1 in the final state. We therefore
have the following definition: that an erasure operation takes hH(X)i ! 0 and H(hXi)! 0.

We can now define minimum costs for these operations acting on certain states. The first interesting
observation is that we recover a notion that was previously used to defeat the Maxwell Demon, but which
fell out of favour once Landauer Erasure was postulated: that of a measurement cost [16]. Consider a
single particle with X = 1

2 , i.e. its state is maximally unknown. The invariant statement tells us that any
measurement operation must incur a work cost of 1

2 kT ln2 to reduce 1
2(hH(X)i+H(hXi)) from k ln2 to

1
2 k ln2. We define this as the measurement of an unknown bit of information. We can therefore conclude
that a measurement operation for a single bit takes hH(X)i = k ln2 ! 0 but leaves H(hXi) = k ln2
unchanged. This incurs a measurement work cost of at least 1

2 kT ln2.
Defining a minimum erasure cost is slightly more complicated, in part owing to a lack of precision in

the usual debate. Let us consider the measurement of a single bit as given above. Suppose we now wish
to erase the result – that is, reset the system in the known state X = 1. We already have hH(X)i= 0 after
the measurement; now we have also to take H(hXi) = k ln2 ! 0. Again, the invariant statement tells us
this will incur a work cost of at least 1

2 kT ln2. We therefore conclude that a reset operation for a single
bit acts on a measured bit that was unknown prior to the measurement, and takes H(hXi) = k ln2 ! 0
but leaves hH(X)i= 0 unchanged. This incurs a reset work cost of at least 1

2 kT ln2.
We give the following as a proposed definition of erasure within single-particle thermodynamics: an

erasure operation for a single bit is a measure–reset operation acting on an unknown bit (X = 1
2 ). The

bit value is measured, then the system reset into a known state. This takes both hH(X)i= k ln2 ! 0 and
H(hXi) = k ln2 ! 0. This incurs an erasure work cost of at least kT ln2. In other words, any erasure
operation (measurement-and-reset) in the system described by DEMONIC and the six basic operations
will require an input of work into the system of at least kT ln2: Landauer Erasure is a necessary part of
this formalisation of single-particle thermodynamics.

S. Abramsky & D. C. Horsman 11

that motivated the introduction of the language in the first place, and show that Landauer Erasure is also
a necessary property of the system.

Key to understanding where this comes from is the invariant statement (1). Considering the two en-
tropy quantities, we can describe them in terms of the different branches of the probabilistic computation.
hH(X)i is the average entropy within a single branch of a computation, averaged across all branches, and
H(hXi) is the entropy of the distribution over all branches of the computation.

A simple way of intutitively distinguishing these quantities is to consider the case where X = 1
2 and

there is a partition, A = T . After a measurement of the particle position there will be two computational
branches, in one of which X = 0 and the other X = 1. Before the measurement hH(X)i=H(hXi) = k ln2.
After the measurement hH(X)i is now zero; however, H(hXi) remains k ln2. If a further operation is
performed that sends the X = 0 state to X = 1, then both entropy quantities will now be zero.

We have seen previously one example of a measurement operation within this system: applying a
piston to a box with a partition in it. Whether the piston can in fact be inserted is a measurement of the
position. If the position was uncertain beforehand, then the computation branches, with two possibilities
for the two definite outcomes. This is measurement within this system: the probability distribution for the
particle position beforehand then becomes the probability distribution over branches, in each of which
the particle has a definite position, X = 0,1. We can therefore define the action of measurement on the
entropic quantities. Using the notation ‘!’ to mean the effect of the operation on a particular variable,
then a measurement operation takes hH(X)i ! 0 but leaves H(hXi) unchanged.

Now we come to erasure. Erasure is the operation of returning the system to the definite known X
state X = 1. If we write the erasure operation as e : (X0, A0, I0, w0) �! (X = 1, A f , I f , w f ). There
may be multiple branches to this computation, but in all of them X = 1 in the final state. We therefore
have the following definition: that an erasure operation takes hH(X)i ! 0 and H(hXi)! 0.

We can now define minimum costs for these operations acting on certain states. The first interesting
observation is that we recover a notion that was previously used to defeat the Maxwell Demon, but which
fell out of favour once Landauer Erasure was postulated: that of a measurement cost [16]. Consider a
single particle with X = 1

2 , i.e. its state is maximally unknown. The invariant statement tells us that any
measurement operation must incur a work cost of 1

2 kT ln2 to reduce 1
2(hH(X)i+H(hXi)) from k ln2 to

1
2 k ln2. We define this as the measurement of an unknown bit of information. We can therefore conclude
that a measurement operation for a single bit takes hH(X)i = k ln2 ! 0 but leaves H(hXi) = k ln2
unchanged. This incurs a measurement work cost of at least 1

2 kT ln2.
Defining a minimum erasure cost is slightly more complicated, in part owing to a lack of precision in

the usual debate. Let us consider the measurement of a single bit as given above. Suppose we now wish
to erase the result – that is, reset the system in the known state X = 1. We already have hH(X)i= 0 after
the measurement; now we have also to take H(hXi) = k ln2 ! 0. Again, the invariant statement tells us
this will incur a work cost of at least 1

2 kT ln2. We therefore conclude that a reset operation for a single
bit acts on a measured bit that was unknown prior to the measurement, and takes H(hXi) = k ln2 ! 0
but leaves hH(X)i= 0 unchanged. This incurs a reset work cost of at least 1

2 kT ln2.
We give the following as a proposed definition of erasure within single-particle thermodynamics: an

erasure operation for a single bit is a measure–reset operation acting on an unknown bit (X = 1
2 ). The

bit value is measured, then the system reset into a known state. This takes both hH(X)i= k ln2 ! 0 and
H(hXi) = k ln2 ! 0. This incurs an erasure work cost of at least kT ln2. In other words, any erasure
operation (measurement-and-reset) in the system described by DEMONIC and the six basic operations
will require an input of work into the system of at least kT ln2: Landauer Erasure is a necessary part of
this formalisation of single-particle thermodynamics.

Erasure (measure-then-reset) of an unknown bit of information 
requires a work cost of at least 

S. Abramsky & D. C. Horsman 11

that motivated the introduction of the language in the first place, and show that Landauer Erasure is also
a necessary property of the system.

Key to understanding where this comes from is the invariant statement (1). Considering the two en-
tropy quantities, we can describe them in terms of the different branches of the probabilistic computation.
hH(X)i is the average entropy within a single branch of a computation, averaged across all branches, and
H(hXi) is the entropy of the distribution over all branches of the computation.

A simple way of intutitively distinguishing these quantities is to consider the case where X = 1
2 and

there is a partition, A = T . After a measurement of the particle position there will be two computational
branches, in one of which X = 0 and the other X = 1. Before the measurement hH(X)i=H(hXi) = k ln2.
After the measurement hH(X)i is now zero; however, H(hXi) remains k ln2. If a further operation is
performed that sends the X = 0 state to X = 1, then both entropy quantities will now be zero.

We have seen previously one example of a measurement operation within this system: applying a
piston to a box with a partition in it. Whether the piston can in fact be inserted is a measurement of the
position. If the position was uncertain beforehand, then the computation branches, with two possibilities
for the two definite outcomes. This is measurement within this system: the probability distribution for the
particle position beforehand then becomes the probability distribution over branches, in each of which
the particle has a definite position, X = 0,1. We can therefore define the action of measurement on the
entropic quantities. Using the notation ‘!’ to mean the effect of the operation on a particular variable,
then a measurement operation takes hH(X)i ! 0 but leaves H(hXi) unchanged.

Now we come to erasure. Erasure is the operation of returning the system to the definite known X
state X = 1. If we write the erasure operation as e : (X0, A0, I0, w0) �! (X = 1, A f , I f , w f ). There
may be multiple branches to this computation, but in all of them X = 1 in the final state. We therefore
have the following definition: that an erasure operation takes hH(X)i ! 0 and H(hXi)! 0.

We can now define minimum costs for these operations acting on certain states. The first interesting
observation is that we recover a notion that was previously used to defeat the Maxwell Demon, but which
fell out of favour once Landauer Erasure was postulated: that of a measurement cost [16]. Consider a
single particle with X = 1

2 , i.e. its state is maximally unknown. The invariant statement tells us that any
measurement operation must incur a work cost of 1

2 kT ln2 to reduce 1
2(hH(X)i+H(hXi)) from k ln2 to

1
2 k ln2. We define this as the measurement of an unknown bit of information. We can therefore conclude
that a measurement operation for a single bit takes hH(X)i = k ln2 ! 0 but leaves H(hXi) = k ln2
unchanged. This incurs a measurement work cost of at least 1

2 kT ln2.
Defining a minimum erasure cost is slightly more complicated, in part owing to a lack of precision in

the usual debate. Let us consider the measurement of a single bit as given above. Suppose we now wish
to erase the result – that is, reset the system in the known state X = 1. We already have hH(X)i= 0 after
the measurement; now we have also to take H(hXi) = k ln2 ! 0. Again, the invariant statement tells us
this will incur a work cost of at least 1

2 kT ln2. We therefore conclude that a reset operation for a single
bit acts on a measured bit that was unknown prior to the measurement, and takes H(hXi) = k ln2 ! 0
but leaves hH(X)i= 0 unchanged. This incurs a reset work cost of at least 1

2 kT ln2.
We give the following as a proposed definition of erasure within single-particle thermodynamics: an

erasure operation for a single bit is a measure–reset operation acting on an unknown bit (X = 1
2 ). The

bit value is measured, then the system reset into a known state. This takes both hH(X)i= k ln2 ! 0 and
H(hXi) = k ln2 ! 0. This incurs an erasure work cost of at least kT ln2. In other words, any erasure
operation (measurement-and-reset) in the system described by DEMONIC and the six basic operations
will require an input of work into the system of at least kT ln2: Landauer Erasure is a necessary part of
this formalisation of single-particle thermodynamics.

S. Abramsky & D. C. Horsman 11

that motivated the introduction of the language in the first place, and show that Landauer Erasure is also
a necessary property of the system.

Key to understanding where this comes from is the invariant statement (1). Considering the two en-
tropy quantities, we can describe them in terms of the different branches of the probabilistic computation.
hH(X)i is the average entropy within a single branch of a computation, averaged across all branches, and
H(hXi) is the entropy of the distribution over all branches of the computation.

A simple way of intutitively distinguishing these quantities is to consider the case where X = 1
2 and

there is a partition, A = T . After a measurement of the particle position there will be two computational
branches, in one of which X = 0 and the other X = 1. Before the measurement hH(X)i=H(hXi) = k ln2.
After the measurement hH(X)i is now zero; however, H(hXi) remains k ln2. If a further operation is
performed that sends the X = 0 state to X = 1, then both entropy quantities will now be zero.

We have seen previously one example of a measurement operation within this system: applying a
piston to a box with a partition in it. Whether the piston can in fact be inserted is a measurement of the
position. If the position was uncertain beforehand, then the computation branches, with two possibilities
for the two definite outcomes. This is measurement within this system: the probability distribution for the
particle position beforehand then becomes the probability distribution over branches, in each of which
the particle has a definite position, X = 0,1. We can therefore define the action of measurement on the
entropic quantities. Using the notation ‘!’ to mean the effect of the operation on a particular variable,
then a measurement operation takes hH(X)i ! 0 but leaves H(hXi) unchanged.

Now we come to erasure. Erasure is the operation of returning the system to the definite known X
state X = 1. If we write the erasure operation as e : (X0, A0, I0, w0) �! (X = 1, A f , I f , w f ). There
may be multiple branches to this computation, but in all of them X = 1 in the final state. We therefore
have the following definition: that an erasure operation takes hH(X)i ! 0 and H(hXi)! 0.

We can now define minimum costs for these operations acting on certain states. The first interesting
observation is that we recover a notion that was previously used to defeat the Maxwell Demon, but which
fell out of favour once Landauer Erasure was postulated: that of a measurement cost [16]. Consider a
single particle with X = 1

2 , i.e. its state is maximally unknown. The invariant statement tells us that any
measurement operation must incur a work cost of 1

2 kT ln2 to reduce 1
2(hH(X)i+H(hXi)) from k ln2 to

1
2 k ln2. We define this as the measurement of an unknown bit of information. We can therefore conclude
that a measurement operation for a single bit takes hH(X)i = k ln2 ! 0 but leaves H(hXi) = k ln2
unchanged. This incurs a measurement work cost of at least 1

2 kT ln2.
Defining a minimum erasure cost is slightly more complicated, in part owing to a lack of precision in

the usual debate. Let us consider the measurement of a single bit as given above. Suppose we now wish
to erase the result – that is, reset the system in the known state X = 1. We already have hH(X)i= 0 after
the measurement; now we have also to take H(hXi) = k ln2 ! 0. Again, the invariant statement tells us
this will incur a work cost of at least 1

2 kT ln2. We therefore conclude that a reset operation for a single
bit acts on a measured bit that was unknown prior to the measurement, and takes H(hXi) = k ln2 ! 0
but leaves hH(X)i= 0 unchanged. This incurs a reset work cost of at least 1

2 kT ln2.
We give the following as a proposed definition of erasure within single-particle thermodynamics: an

erasure operation for a single bit is a measure–reset operation acting on an unknown bit (X = 1
2 ). The

bit value is measured, then the system reset into a known state. This takes both hH(X)i= k ln2 ! 0 and
H(hXi) = k ln2 ! 0. This incurs an erasure work cost of at least kT ln2. In other words, any erasure
operation (measurement-and-reset) in the system described by DEMONIC and the six basic operations
will require an input of work into the system of at least kT ln2: Landauer Erasure is a necessary part of
this formalisation of single-particle thermodynamics.

+ =

S. Abramsky & D. C. Horsman 11

that motivated the introduction of the language in the first place, and show that Landauer Erasure is also
a necessary property of the system.

Key to understanding where this comes from is the invariant statement (1). Considering the two en-
tropy quantities, we can describe them in terms of the different branches of the probabilistic computation.
hH(X)i is the average entropy within a single branch of a computation, averaged across all branches, and
H(hXi) is the entropy of the distribution over all branches of the computation.

A simple way of intutitively distinguishing these quantities is to consider the case where X = 1
2 and

there is a partition, A = T . After a measurement of the particle position there will be two computational
branches, in one of which X = 0 and the other X = 1. Before the measurement hH(X)i=H(hXi) = k ln2.
After the measurement hH(X)i is now zero; however, H(hXi) remains k ln2. If a further operation is
performed that sends the X = 0 state to X = 1, then both entropy quantities will now be zero.

We have seen previously one example of a measurement operation within this system: applying a
piston to a box with a partition in it. Whether the piston can in fact be inserted is a measurement of the
position. If the position was uncertain beforehand, then the computation branches, with two possibilities
for the two definite outcomes. This is measurement within this system: the probability distribution for the
particle position beforehand then becomes the probability distribution over branches, in each of which
the particle has a definite position, X = 0,1. We can therefore define the action of measurement on the
entropic quantities. Using the notation ‘!’ to mean the effect of the operation on a particular variable,
then a measurement operation takes hH(X)i ! 0 but leaves H(hXi) unchanged.

Now we come to erasure. Erasure is the operation of returning the system to the definite known X
state X = 1. If we write the erasure operation as e : (X0, A0, I0, w0) �! (X = 1, A f , I f , w f ). There
may be multiple branches to this computation, but in all of them X = 1 in the final state. We therefore
have the following definition: that an erasure operation takes hH(X)i ! 0 and H(hXi)! 0.

We can now define minimum costs for these operations acting on certain states. The first interesting
observation is that we recover a notion that was previously used to defeat the Maxwell Demon, but which
fell out of favour once Landauer Erasure was postulated: that of a measurement cost [16]. Consider a
single particle with X = 1

2 , i.e. its state is maximally unknown. The invariant statement tells us that any
measurement operation must incur a work cost of 1

2 kT ln2 to reduce 1
2(hH(X)i+H(hXi)) from k ln2 to

1
2 k ln2. We define this as the measurement of an unknown bit of information. We can therefore conclude
that a measurement operation for a single bit takes hH(X)i = k ln2 ! 0 but leaves H(hXi) = k ln2
unchanged. This incurs a measurement work cost of at least 1

2 kT ln2.
Defining a minimum erasure cost is slightly more complicated, in part owing to a lack of precision in

the usual debate. Let us consider the measurement of a single bit as given above. Suppose we now wish
to erase the result – that is, reset the system in the known state X = 1. We already have hH(X)i= 0 after
the measurement; now we have also to take H(hXi) = k ln2 ! 0. Again, the invariant statement tells us
this will incur a work cost of at least 1

2 kT ln2. We therefore conclude that a reset operation for a single
bit acts on a measured bit that was unknown prior to the measurement, and takes H(hXi) = k ln2 ! 0
but leaves hH(X)i= 0 unchanged. This incurs a reset work cost of at least 1

2 kT ln2.
We give the following as a proposed definition of erasure within single-particle thermodynamics: an

erasure operation for a single bit is a measure–reset operation acting on an unknown bit (X = 1
2 ). The

bit value is measured, then the system reset into a known state. This takes both hH(X)i= k ln2 ! 0 and
H(hXi) = k ln2 ! 0. This incurs an erasure work cost of at least kT ln2. In other words, any erasure
operation (measurement-and-reset) in the system described by DEMONIC and the six basic operations
will require an input of work into the system of at least kT ln2: Landauer Erasure is a necessary part of
this formalisation of single-particle thermodynamics.



Conclusions

We have used formal semantics and verification as a process logic 
for single-particle thermodynamics.

Basic transitions and operations are defined, as are their 
composition, and a new invariant statement found.

The Second Law is provably satisfied by any combination of the 
basic operations. This is not “up for debate”!

Landauer Erasure — work cost of measure then reset — is a formal 
consequence of the logical system. 



Further work

Lots!

Extending to multi-particle states, extend to statistical mechanics, 
rederive partition function statements, extend definition of 
Landauer Erasure etc etc etc.

What is the new entropy? What’s its connection to the Holevo 
quantity? What’s the relationship to the Second Law?

And finally…

Where else in physics can we use these verification tools to prove 
formal statements about the possible states of a system??


