= | I3)
(188):

< - ‘i’ o
S
el -

S5
UNIVERSITY OF

OXFORD

DEMONIC Programming

Horsman Abramsky

A8
W Durham

University

Outline

Maxwell’s Demon and Landauer’s Hypothesis.
Thermodynamics in 1 slide.
A toy model system.

Defining a programming language for the toy system.

DEMONIC syntax and semantics.
Allowed operations expressed in DEMONIC.

Formal verification: a computational invariant.

The Second Law and Landauer’s Hypothesis proven.

8Y WILIAM SEAXKESPEARE

Oxford Theatre Guild presents KING LEAR z
7-18 July, Merton College Gardens
7.30pm (2.30pm matinee, Saturday | 1th)

01865 305305 TO

WWWTICKETSOXFORD.COM ciran:

O for a muse of ﬁve.’

Henry V; opening words

O fov a muse of jgd=e-’-

single-particle gas in equilibrium with
a heat bath at temperature T!

The thermodynamics of computation

¢ . . .)
Information is physical” — information processing is necessarily a
physical process obeying laws of physics.

Thermodynamics: one-way entropy increase, therefore key
constraints on what and how information can be processed.

The connection between information and entropy/thermodynamics:
Landauer’s Hypothesis: erasure of 1 bit requires kTIn2 of work.

But. .. it has not been proven.

A toy system - thermodynamics 101

Single particle in a box, two pistons, one partition, heat bath T.

Variables: pressure p, volume V, entropy H = —k(p;Inp; + prlnpg)

% Vi
p? = const Hyy — Hin = kln —

1n

A toy system - thermodynamics 101

Allowed operations:

[nsert/remove partition

A toy system - thermodynamics 101

Allowed operations:

[nsert/remove partition

A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right

A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right

A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right

A toy system - thermodynamics 101

Allowed operations:

Insert/remove pistons left and right

(NB isothermal compression: requires work kTIn2)

Formalising the system

What we will do: extract out the logical structure of the state and
allowed transitions into a programming language.

An allowed operation is a function/basic statement not a primitive.
Allowed programs are built out of allowed statements.

state variable: 5= (X,A,[,w) ETXBxBxXZ
X € T:={0,5,1} : prob of being on LHS.
A, I: Boolean flags for partition/a piston.

w: total work extracted from the system in unit of kTlnZ2.

DEMONIC syntax

LProb ::=T:= 0]1/2|1

Part ::= B:= true| false

Pist ::= BB

WUnit ::= Z

Field ::= LProb | Part | Pist | WUnit

Fieldname ::= X |A|I|w (where W = wkT In2)

s € State ::= (LProb,Part,Pist, WUnit)

BExp ::= B | State.A | State.l

S € Statement ::= S1;52 | S1 DS, | State.Fieldname = Field
| if BExp then S| else §; | skip

DEMONIC operational semantics

(assign)
(compl)

(comp2)
(if1)
(if2)

(probl)
(prob2)

(x:=a, s) = (skip, s|x — al)
<Slv S> ~p < /17S/>

(81582, 8) =, (S7:52, §)

(skip; S, s) = (S, s)

(if B then S| else S, 5) =

(if B then S| else S, 5) =

(

(

S1D 5, S> =1/2 <S1, S>
S1D 53, S> =1/2 <SQ, S>

(St s)if |
(52,) if [B]

|s =false

|s = true

Allowed thermodynamic operations

Inserting a partition:

Partln =4 ¢ (5s.A :=true)

Removing a partition:

PartOut =, if (s.A = true) then
(if (s.I = false) then
(s.X :=3) and (s.A := false) else
(s.A :=false))
else skip

Allowed thermodynamic operations

Removing a piston (left and right)

LPistOut =,,.; if (s./ = false) or =(s.X =0) then
skip else
(if (s.A = true) then
(5. :=false) else

(s.] :=false) and (s.X :=5) and (sw:=w+1))

DO —

RPistOut =, if (s./ = false) or —(s.X =1) then

skip else
(if (s.A = true) then
(5. :=false) else
(s.:=false) and (s.X := 1) and (sw:=w+1))

Allowed thermodynamic operations

Inserting a piston is more complicated...

Can we insert a piston to the right?
No! Would compress to zero volume, requiring infinite work.

But for a programming language we have to give the outcome if it

were attempted.

Allowed thermodynamic operations

ConSider this CYC1e (PartIn; LPistIn; Part Out;,LPistOut, (%, F, F, wy))

— (LPistIn; PartOut; LPistOut, (%, T, F, wy))
=12 (PartOut;LPistOut, (0, T, T, wo))

—> (LPistOut, (0, F, T, wy))

= (skip, (3, F, F, wo+1))

(PartIn; LPistIn; PartOut;LPistOut, (%, F, F, wp))
= (LPistIn; PartOut;LPistOut, (3, T, F, w))
=12 (PartOut;LPistOut, (0, T, F, wo—w¢))
— (LPistOut, (%, F, F, wo—w,))
— (skip, (%, F, F, wo—w.))

Expected work extracted: W, = (wo+ 1(1 —w.))kT In2

No perpetual motion implies W, <W,, ie. w. > 1

Allowed thermodynamic operations

Therefore...

LPistln =,/ if (s.X = 1) then
(sw:=w—1) else
(if (s.X =0) then
(5. :=true) else
(if (s.A = false) then
(s.X:=1) and (s.w:=w—1) and (s.] := true) else
[(s.X :=0) and (s./ :=true)|®|[(s.X :=1) and (s.w:=w—1)]))

RPistIn =;4,¢ if (s.X =0) then
(sw:=w—1) else
(if (s.X =1) then
(5. :=true) else
(if (s.A = false) then
(s.X:=0) and (s.w:=w—1) and (s.I :=true) else
[(s.X :=1) and (5. :=true)|®[(s.X :=0) and (s.w :=w—1))]))

Computational Invariant Statement

Probabilistic computational invariants are given over the set of
probability distributions over states.

This is easy for a physicist: expectation values!

An invariant statement is a predicate that is true after a transition if
it is true before, and preserved under composition.

What is the invariant statement for this single-particle system...!

Computational Invariant Statement

(wkIn2) — = ({H(X)) + H((X))) <0

Where H(x) = —kT(xInx+ (1 —x)In(1 —x))

Every composition of the allowed thermodynamic operations
satisfies this invariant afterwards if it satisfies it beforehand.

What is that entropic quantity!??

The Second Law is a theorem of the system

Kelvin statement of the second law: Ay: (X, Ao, Iy, wo) R (Xo0, Ao, Io, (wg) > wp)

Define the zero-point of the work counter as

1
- 2kIn?2

wo ({(H(Xo)) +H((Xo)))

then the invariant is satisfied initially. Final invariant gives

(wr)kIn2 — 5 ((H(Xo)) +H((Xo))) <0

which straightforwardly implies
(Wr) < wo

for all allowed operations and compositions

[andauer Erasure

Two entropies make up the invariant entropy:
<H(X)>: average entropy within a branch of the computation.

H(<X>): entropy of the probability distribution of the
computation (across all its branches).

Consider X=1/2, partition=true. <H(X)>=H(<X>)=kln2.

Measurement gives in two branches, X=0 and X=1.

<H(X)>=0 but H(<X>)=kln2 still.

Resetting the result to a known state gives one branch, eg. X=0.

<H(X)>=0 and H(<X>)=0.

[andauer Erasure

Given the invariant

(wkIn2) — 2 ((H(X)) +H((X))) <0

Measurement of a bit of information requires at least 347 In2

Resetting of a measured bit of information requires at least 3k7 In2

Erasure (measure-then-reset) of an unknown bit of information
requires a work cost of at least

1kTIn2+ 3kTIn2 = kT In2

Conclusions

We have used formal semantics and verification as a process logic
for single-particle thermodynamics.

Basic transitions and operations are defined, as are their
composition, and a new invariant statement found.

The Second Law is provably satisfied by any combination of the
basic operations. This is not “up for debate”!

[Landauer Erasure — work cost of measure then reset — is a formal
consequence of the logical system.

Further work

[ots!

Extending to multi-particle states, extend to statistical mechanics,
rederive partition function statements, extend definition of
Landauer Erasure etc etc etc.

What is the new entropy! What’s its connection to the Holevo
quantity! What’s the relationship to the Second Law?

And finally...

Where else in physics can we use these verification tools to prove
formal statements about the possible states of a system!?

