Categories in control

Jason M. Erbele
University of California, Riverside

Quantum Physics and Logic
Oxford, England
July 17, 2015
Control theory is concerned with manipulating systems to induce them to enter a desired range of states. Modelling a system helps us understand what is happening and what manipulations can be made. Control theorists use the visual language of signal-flow diagrams as an effective way of communicating system models.
Control theory is concerned with manipulating systems to induce them to enter a desired range of states. Modelling a system helps us understand what is happening and what manipulations can be made. Control theorists use the visual language of signal-flow diagrams as an effective way of communicating system models.

Despite working at the classical level, categories of signal-flow diagrams have striking similarities to categories of quantum systems.
Two prominent features:

- Integration
- Feedback

Signal-flow diagrams in control theory are systems of linear differential equations with a user-friendly package.
Lemma (Baez, E.)

The category FinVect_k, with

- finite dimensional vector spaces over k as objects,
- linear maps as morphisms,

is a symmetric monoidal category with \oplus as its tensor product instead of \otimes. FinVect_k is generated as a symmetric monoidal category by one object, k, together with the morphisms

where $c \in k$.
Scalar multiplication

1. For each $c \in k$ we get a linear map for multiplying numbers by c:

$$
c: \quad k \rightarrow k
\quad x \mapsto cx
$$
Scalar multiplication

1. For each $c \in k$ we get a linear map for multiplying numbers by c:

$$c : k \rightarrow k$$

$$x \mapsto cx$$

By taking Laplace transforms, engineers reduce integration to multiplication by $\frac{1}{s}$. This makes integration a special case of scalar multiplication when we take $k = \mathbb{R}(s)$.
2. We can add two numbers together:

\[+ : \quad k \oplus k \quad \rightarrow \quad k \]

\[(x, y) \quad \mapsto \quad x + y \]
3. We can **duplicate** a number to get two copies of it:

\[\Delta: \quad k \mapsto k \oplus k \]

\[x \mapsto (x, x) \]
4. We have the number zero:

\[0: \{0\} \rightarrow k \]

\[0 \quad \leftrightarrow \quad 0 \]
5. We can **delete** a number:

\[!: k \rightarrow \{0\} \]

\[x \mapsto 0 \]
These morphisms obey relations that we can state succinctly as

Theorem (Baez, E.)

FinVect\(_k\) is the free symmetric monoidal category on a bicommutative bimonoid over \(k\).

Simon Wadsley and Nick Woods later demonstrated this also holds for finitely generated free modules over any commutative rig \(k\).

Expanded, this theorem lists the relations obeyed by the generating morphisms:
(k, +, 0) is a commutative monoid:
4–6 Cocommutative comonoid

$(k, \Delta, !)$ is a cocommutative comonoid:
(\(k\), \(+\), \(0\), \(\Delta\), \(!\)) is a bimonoid:
The rig structure of k can be recovered from the generators:

\[b + c = b \triangleleft c \]

\[bc = c \square b \]

\[1 = 1 \]

\[0 = 0 \]
Scalar multiplication by $c \in k$ commutes with the generators:
Linear maps only flow one-way. Since we want to describe feedback, we need something better.
Linear maps only flow one-way. Since we want to describe feedback, we need something better.

Linear relations!
A linear relation $F: U \twoheadrightarrow V$ from a vector space U to a vector space V is a linear subspace $F \subseteq U \oplus V$.

When we compose linear relations $F: U \twoheadrightarrow V$ and $G: V \twoheadrightarrow W$, we get a linear relation $G \circ F: U \twoheadrightarrow W$:

$$G \circ F = \{(u, w) : \exists v \in V \quad (u, v) \in F \text{ and } (v, w) \in G\}.$$
A linear map \(\phi: U \to V \) gives a linear relation \(F: U \nrightarrow V \), namely the graph of that map:

\[
F = \{(u, \phi(u)) : u \in U\}.
\]

In this way, composing linear maps is a special case of composing linear relations.

There is a category \(\text{FinRel}_k \) with finite-dimensional vector spaces over the field \(k \) as objects and linear relations as morphisms.

\(\text{FinRel}_k \) becomes symmetric monoidal using \(\oplus \). It has \(\text{FinVect}_k \) as a symmetric monoidal subcategory.

Fully general signal-flow diagrams are pictures of morphisms in \(\text{FinRel}_k \).
Baez and I showed that starting with the generators of \(\text{FinVect}_k \), we only need two more morphisms to generate \(\text{FinRel}_k \), namely:

6. The ‘cup’:

\[
\bigcup : k \oplus k \rightarrow \{0\}
\]

This is the linear relation

\[
\bigcup = \{(x, x, 0) : x \in k\} \subseteq k \oplus k \oplus \{0\}.
\]
7. The ‘cap’:

This is the linear relation

\[\cap : \{0\} \rightarrow k \oplus k \]

given by:

\[\cap = \{(0, x, x) : x \in k\} \subseteq \{0\} \oplus k \oplus k. \]
Lemma (Baez, E.)

The category FinRel_k, with

- finite dimensional vector spaces over k as objects,
- linear relations as morphisms,

is a symmetric monoidal category with \oplus as its tensor product instead of \otimes. FinRel_k is generated as a symmetric monoidal category by one object, k, together with the morphisms

where $c \in k$.
The relations governing these morphisms can be briefly stated as

Theorem (Baez–E., Bonchi–Sobociński–Zanasi)

FinRel_k is the free symmetric monoidal category on a pair of interacting bimonoids over k.

Expanded to a list, this theorem says we have the following relations in addition to the ones already seen:
These relations allow us to 'turn morphisms around'.

Example: coaddition is addition turned around:

\[\begin{align*}
&+ \\
&\Rightarrow +^\dagger
\end{align*} \]

\[\{(x, y, z) : x = y + z\} \subseteq k \oplus k^2 \]
19–20 Zigzag relations

These relations allow us to ‘turn morphisms around’. E.g. **coaddition** is addition turned around:

\[+^\dagger : k \hookrightarrow k^2 \]

\[+^\dagger = \{(x, y, z) : x = y + z\} \subseteq k \oplus k^2 \]
21–24 Frobenius relations

‘Dark’ morphisms:
\((k, +, 0, +\dagger, 0\dagger)\) is a Frobenius monoid:

\[
\begin{align*}
\begin{array}{ccc}
\text{\includegraphics[height=2cm]{frobenius_relations_dark1}} & = & \text{\includegraphics[height=2cm]{frobenius_relations_dark2}} \\
\end{array}
\end{align*}
\]
21–24 Frobenius relations

‘Dark’ morphisms:
\((k, +, 0, +^\dagger, 0^\dagger)\) is a Frobenius monoid:

\[
\begin{align*}
\begin{array}{ccc}
\begin{tikzpicture}
 \node (a) at (0,0) [circle,fill,inner sep=1.5pt] {};
 \node (b) at (0,-1) [circle,fill,inner sep=1.5pt] {};
 \node (c) at (1,0) [circle,fill,inner sep=1.5pt] {};
 \node (d) at (1,-1) [circle,fill,inner sep=1.5pt] {};
 \draw (a) edge (b) edge (c) edge (d);
 \draw (a) edge[bend left] (d);
\end{tikzpicture}
\end{array} & = & \begin{tikzpicture}
 \node (a) at (0,0) [circle,fill,inner sep=1.5pt] {};
 \node (b) at (0,-1) [circle,fill,inner sep=1.5pt] {};
 \node (c) at (1,0) [circle,fill,inner sep=1.5pt] {};
 \node (d) at (1,-1) [circle,fill,inner sep=1.5pt] {};
 \draw (a) edge (b) edge (c) edge (d);
 \draw (a) edge[bend left] (d);
\end{tikzpicture}
\end{array}
\end{align*}
\]

‘Light’ morphisms:
\((k, \Delta^\dagger, !^\dagger, \Delta, !)\) is a Frobenius monoid:

\[
\begin{align*}
\begin{array}{ccc}
\begin{tikzpicture}
 \node (a) at (0,0) [regular](0) [circle,fill,inner sep=1.5pt] {};
 \node (b) at (0,-1) [regular](1) [circle,fill,inner sep=1.5pt] {};
 \node (c) at (1,0) [regular](2) [circle,fill,inner sep=1.5pt] {};
 \node (d) at (1,-1) [regular](3) [circle,fill,inner sep=1.5pt] {};
 \draw (a) edge (b) edge (c) edge (d);
 \draw (a) edge[bend left] (d);
\end{tikzpicture}
\end{array} & = & \begin{tikzpicture}
 \node (a) at (0,0) [regular](0) [circle,fill,inner sep=1.5pt] {};
 \node (b) at (0,-1) [regular](1) [circle,fill,inner sep=1.5pt] {};
 \node (c) at (1,0) [regular](2) [circle,fill,inner sep=1.5pt] {};
 \node (d) at (1,-1) [regular](3) [circle,fill,inner sep=1.5pt] {};
 \draw (a) edge (b) edge (c) edge (d);
 \draw (a) edge[bend left] (d);
\end{tikzpicture}
\end{array}
\end{align*}
\]
Both Frobenius monoids are extra-special:
\(\cap \) can be expressed in terms of \(\Delta \) and \(!^\dagger \):

\[
\begin{align*}
\cap & = \begin{array}{c}
\text{Diagram 1}
\end{array}
\end{align*}
\]

\(\cup \) with a factor of \(-1\) inserted can be expressed in terms of \(+\) and \(0^\dagger\):

\[
\begin{align*}
\cup & = \begin{array}{c}
\text{Diagram 2}
\end{array}
\end{align*}
\]
31 Reciprocal scalar multiplication

For any $c \in k$, $c \neq 0$, scalar multiplication by c^{-1} is the adjoint of scalar multiplication by c:

\[
\begin{array}{c}
\triangle c \\
= \\
\triangle c^{-1}
\end{array}
\]
31 Reciprocal scalar multiplication

For any $c \in k$, $c \neq 0$, scalar multiplication by c^{-1} is the adjoint of scalar multiplication by c:

\[
\begin{array}{c}
\text{c} \\
\downarrow \\
\text{c}^{-1}
\end{array}
\quad =
\quad
\begin{array}{c}
\text{c}^{-1} \\
\downarrow \\
\text{c}
\end{array}
\]

This list of relations was independently discovered by Bonchi, Sobociński and Zanasi. They noted the Frobenius relations can be seen as coming from the interaction of the bimonoids over k.
The categories FinVect_k and FinRel_k are beautiful exhibits of the category theory lurking within control theory. What other remarkable structures can we uncover?