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Categories as Toy Quantum Models

Categorical Quantum Mechanics lets us see any dagger compact C as a
toy model of quantum theory.

Examples

FHilb - finite-dimensional Hilbert spaces & linear maps.

Rel - sets & relations.

Spek - Spekkens’ toy model, subcategory of Rel.

A new class of models

Rel(C) - the category of relations of a regular category C.

Surprising connections: mixing  groupoids & categorification!

Quantum-like behaviour without superposition.
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Dagger Compact Categories

Dagger compact category D:

symmetric monoidal A⊗ B ' B ⊗ A

compact closed A a A∗

† : Dop → D with A† = A

g ◦ f

A

C

=
g

f

A

B

C

f ⊗ g

A ⊗ C

B ⊗ D

= f g

A

B

C

D

f †

B

A

= f

B

A
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Categories of Relations

A relation R : A B in C is a subobject R � A× B.
C regular  Rel(C) dagger compact.
Internal logic: can pretend we’re in Rel(Set), use ∧ and ∃ :

S ◦ R = {(a, c) ∈ A× C | (∃b ∈ B) R(a, b) ∧ S(b, c)}� A× C

R† = {(b, a) ∈ B × A | R(a, b)}, ⊗ from × in C

Examples

Regular: any topos, category of algebras, abelian category.
Rel(Set) = Rel.
Rel(Grp): subgroups R ≤ G × H.
Rel(Vectk): subspaces R ≤ V ⊕W - see ‘Categories in Control’.
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C*-Algebras become Groupoids

A special dagger Frobenius structure (A, , ) satisfies:

= = = = =

In FHilb: finite-dimensional C*-algebras. In Rel: small groupoids!

Theorem

Special dagger Frobenius structures in Rel(C) are the same as internal
groupoids in C.
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C*-Algebras become Groupoids

A special dagger Frobenius structure (A, , ) satisfies:

= = = = =

In FHilb: finite-dimensional C*-algebras. In Rel: small groupoids!

Theorem

Special dagger Frobenius structures in Rel(C) are the same as internal
groupoids in C.

Examples

Set: small groupoids.
Grp: strict 2-groups (Baez-Lauda) ⇐⇒ crossed modules.
Vectk : 2-vector spaces (Baez-Crans).
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Completely Positive Relations

CP(D): Frobenius in D & completely positive (A, ) f (B, )

f =
g

g for some g .

Examples

CP(FHilb): finite-dimensional C*-algebras & completely positive maps.
CP(Rel): groupoids & relations such that

R(a, b)⇒ R(a−1, b−1) ∧ R(iddom(a), iddom(b))
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Mal’cev Categories

In Grp or Vectk :

R(a, c) ∧ R(b, c) ∧ R(b, d) =⇒ R(a, d)

C is Mal’cev when holds ∀R.

Theorem

When C is Mal’cev regular we get an equivalence of categories

CP(Rel(C)) ' Rel(Gpd(C)) ' Rel(Cat(C))

Examples

Grp, Vectk , Rings, Lie algebras. Any abelian category.
CP(Rel(Grp)) ' Rel(CrossedModules)
CP(Rel(Vectk)) ' Rel(2Vectk)
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Quantum Properties of Rel(C)

Heisenberg Uncertainty Principle:

M

B

B

=

B

B

=⇒ (∃ψ) M

C

B

=
ψ

C

B

No-Broadcasting:

B

A

A

=

A

A

= B

A

A

=⇒ (A, ) is commutative

Rel Rel(C) Mal’cev FHilb

7 3 3
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Non-Quantum Features of Rel(C)

C Mal’cev  any state is a projection:

ψ ψ

A

=

ψ

A

=
ψ

A

C has zero object (e.g. Grp, Vectk)  no distinct classical data:

ψ
=

ψ ψ φ
=

φ φ
=⇒

ψ
=

φ

Sean Tull (Oxford) Quantum Categories of Relations QPL 2015 9 / 10



Non-Quantum Features of Rel(C)

C Mal’cev  any state is a projection:

ψ ψ

A

=

ψ

A

=
ψ

A

C has zero object (e.g. Grp, Vectk)  no distinct classical data:

ψ
=

ψ ψ φ
=

φ φ
=⇒

ψ
=

φ

Sean Tull (Oxford) Quantum Categories of Relations QPL 2015 9 / 10



Non-Quantum Features of Rel(C)

C Mal’cev  any state is a projection:

ψ ψ

A

=

ψ

A

=
ψ

A

C has zero object (e.g. Grp, Vectk)  no distinct classical data:

ψ
=

ψ ψ φ
=

φ φ
=⇒

ψ
=

φ

Sean Tull (Oxford) Quantum Categories of Relations QPL 2015 9 / 10



Summary

Rel(C) gives us many new toy quantum models.

Internal logic makes life easy: can pretend we’re in Rel.

When C is Mal’cev:

CP(Rel(C)) ' Rel(Cat(C)), mixing  categorification.

Rel(C) lacks superposition + while retaining quantum-like behaviour.

“least quantum” ↔ “most quantum”
Rel Rel(C) Mal’cev FHilb

Thanks for listening!
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