Unordered Tuples in Quantum Computation

Robert Furber
rfurber@cs.ru.nl

Bas Westerbaan
bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

July 15, 2015
What we did

Computed algebras for several unordered quantum types. (e.g., unordered pair, cycles)

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)
What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles)
Computed algebras for several unordered quantum types. (eg. unordered pair, cycles) using representation theory of finite groups.
What we did

Computed algebras for several unordered quantum types. (eg. unordered pair, cycles) using representation theory of finite groups.

(After discussing paper of Pagani, Selinger, Valiron with Sam Staton.)
The heavy lifting
The heavy lifting

Schur

Weyl
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$\mathbb{M}^2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>ordered pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
<tr>
<td>unordered pair of bits</td>
<td>$\mathbb{C}^3 {00, 01, 10, 11}$</td>
</tr>
<tr>
<td>unordered pair of qubits</td>
<td>$\mathbb{M}^2 \otimes \mathbb{M}^2 \cong B(\mathbb{C}^4)$</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$\mathbb{M}_2 \cong B(\mathbb{C}^2)$, ordered pair of bits</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$, ordered pair of qubits</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{M}_2 \otimes \mathbb{M}_2 \cong B(\mathbb{C}^4)$, unordered pair of bits</td>
</tr>
<tr>
<td></td>
<td>$\mathbb{C}^3 \setminus {00,01} = {10,11}$, unordered pair of qubits</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td></td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td></td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
<tr>
<td>(ordered) pair of qubits</td>
<td>$M_2 \otimes M_2 \cong B(\mathbb{C}^4)$</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
<tr>
<td>(ordered) pair of qubits</td>
<td>$M_2 \otimes M_2 \cong B(\mathbb{C}^4)$</td>
</tr>
<tr>
<td>unordered pair of bits</td>
<td></td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
<tr>
<td>(ordered) pair of qubits</td>
<td>$M_2 \otimes M_2 \cong B(\mathbb{C}^4)$</td>
</tr>
<tr>
<td>unordered pair of bits</td>
<td>\mathbb{C}^3</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
<tr>
<td>(ordered) pair of qubits</td>
<td>$M_2 \otimes M_2 \cong B(\mathbb{C}^4)$</td>
</tr>
<tr>
<td>unordered pair of bits</td>
<td>$\mathbb{C}^3 {00, 01 = 10, 11}$</td>
</tr>
</tbody>
</table>
Quantum types as algebras

<table>
<thead>
<tr>
<th>type</th>
<th>algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>qubit</td>
<td>$M_2 \cong B(\mathbb{C}^2)$</td>
</tr>
<tr>
<td>bit</td>
<td>\mathbb{C}^2</td>
</tr>
<tr>
<td>(ordered) pair of bits</td>
<td>$\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$</td>
</tr>
<tr>
<td>(ordered) pair of qubits</td>
<td>$M_2 \otimes M_2 \cong B(\mathbb{C}^4)$</td>
</tr>
<tr>
<td>unordered pair of bits</td>
<td>$\mathbb{C}^3 {00, 01 = 10, 11}$</td>
</tr>
<tr>
<td>unordered pair of qubits</td>
<td>?</td>
</tr>
</tbody>
</table>
I asked a physicist.

He replied: "Fermions or Bosons?"

1. Bosons:

$$|00\rangle, |11\rangle, |01\rangle + |10\rangle$$

2. Fermions:

$$C|01\rangle - |10\rangle$$

(Pauli exclusion principle)
I asked a physicist.
He replied:

Unordered pair of qubits

1. **Bosons:**

 $|00\rangle$, $|11\rangle$, $|01\rangle + |10\rangle$

2. **Fermions:**

 $|01\rangle - |10\rangle$

(Pauli exclusion principle)
I asked a physicist.
He replied: “Fermions or Bosons?”
I asked a physicist.
He replied: “Fermions or Bosons?”

1. Bosons: M_3
Unordered pair of qubits

I asked a physicist.
He replied: “Fermions or Bosons?”

1. Bosons: M_3
 $|00\rangle, |11\rangle, |01\rangle + |10\rangle$

(Pauli exclusion principle)
I asked a physicist.
He replied: “Fermions or Bosons?”

1. Bosons: M_3
 \[|00\rangle, |11\rangle, |01\rangle + |10\rangle \]

2. Fermions: \mathbb{C}
Unordered pair of qubits

I asked a physicist.
He replied: “Fermions or Bosons?”

1. Bosons: M_3
 $|00\rangle, |11\rangle, |01\rangle + |10\rangle$

2. Fermions: \mathbb{C}
 $|01\rangle - |10\rangle$
I asked a physicist.
He replied: “Fermions or Bosons?”

1. Bosons: M_3
 $|00\rangle, |11\rangle, |01\rangle + |10\rangle$

2. Fermions: \mathbb{C}
 $|01\rangle - |10\rangle$
(Pauli exclusion principle)
1. Type should not depend on implementation
2. Type should come with a rule

So what about CoEq(id, swap)?

\[t \otimes t f \rightarrow s (f \circ \text{swap} = f) \]

CoEq(id, swap) \rightarrow f' s
1. Type should not depend on implementation
1. Type should not depend on implementation
2. Type should come with a rule
1. Type should not depend on implementation
2. Type should come with a rule

So what about CoEq(id, swap)?
1. Type should not depend on implementation

2. Type should come with a rule

So what about $\text{CoEq}(\text{id}, \text{swap})$?

\[
\begin{align*}
t \otimes t & \xrightarrow{f} s \quad (f \circ \text{swap} = f) \\
\text{CoEq}(\text{id}, \text{swap}) & \xrightarrow{f'} s
\end{align*}
\]
CoEq(id, swap)
CoEq(id, swap)

\[M_3 \oplus \mathbb{C} \]

comes from \(|00\rangle, |11\rangle, |10\rangle + |01\rangle\).

\(C\) corresponds to \(|01\rangle - |10\rangle\), which is symmetric up to global phase.
CoEq(id, swap)

\[M_3 \oplus \mathbb{C} \]

(In $\text{fd-CStar}_{\text{cPsU}}^{\text{op}}$)
CoEq(id, swap)

\[M_3 \oplus \mathbb{C} \]

(In Selinger’s Q)
CoEq(id, swap)

\[M_3 \oplus \mathbb{C} \]

(In CPM_s)
CoEq(id, swap)

\[M_3 \oplus \mathbb{C} \]

\((\text{In } \text{fd-} \text{CStar}_{\text{cpSU}}^{\text{op}})\)

\(M_3\) comes from \(|00\rangle\), \(|11\rangle\) and \(|10\rangle + |01\rangle\).
CoEq(id, swap)

\[M_3 \oplus \mathbb{C} \]

\[\text{(In } \text{fd-CStar}^{\text{op}}_{\text{CPSU}}) \]

M_3 comes from \(|00\rangle, |11\rangle \) and \(|10\rangle + |01\rangle \).
\(\mathbb{C} \) corresponds to \(|01\rangle - |10\rangle \), which is symmetric up to global phase.
The coequalizer is easy to describe:

\[E = \{ a; \ a \in M_2 \otimes M_2; \ \text{swap}(a) = a \} \]
The coequalizer is easy to describe:

\[E = \{ a; \ a \in M_2 \otimes M_2; \ \text{swap}(a) = a \} \]

Crux: \(E \cong M_3 \oplus \mathbb{C} \).
The coequalizer is easy to describe:

$$E = \{ a; \ a \in M_2 \otimes M_2; \ \text{swap}(a) = a \}$$

Crux: $E \cong M_3 \oplus \mathbb{C}$.

Has simple $\frac{1}{2}$-page proof, which led to . . .
Remainder of this talk

1. Unordered tuples
 - Sketch of proof
2. Cycles
3. Unordered words
Remainder of this talk

1. Unordered tuples
 ▶ Sketch of proof
2. Cycles
3. Unordered words
Result 1: unordered tuples

\[\text{unordered tuples of } d\text{-level systems} \]
\[\bigoplus_{\lambda \in Y^n,d} M^\lambda \]
where \(Y^n,d \) denotes the \(n \)-block Young diagrams of height at most \(d \) and \(M^\lambda \) the dimension of the corresponding representation of \(\text{GL}(d) \).

Or explicitly:
\[Y^n,d = \{ \lambda; \lambda \in \mathbb{N}^d; \lambda_1 \geq \ldots \geq \lambda_d \geq 0; \lambda_1 + \ldots + \lambda_d = n \} \]
and
\[M^\lambda = \prod_{1 \leq i < j \leq d} \lambda_i - \lambda_j + j - i. \]
Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m\lambda}$$
Result 1: unordered tuples

Unordered \(n \)-tuples of \(d \)-level systems

\[
\bigoplus_{\lambda \in Y_{n,d}} M_{m\lambda}
\]

where \(Y_{n,d} \) denotes the \(n \)-block Young diagrams
Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m\lambda}$$

where $Y_{n,d}$ denotes the n-block Young diagrams of height at most d.
Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_{\lambda}}$$

where $Y_{n,d}$ denotes the n-block Young diagrams of height at most d and m_{λ} the dimension
Result 1: unordered tuples

Unordered n-tuples of d-level systems

\[
\bigoplus_{\lambda \in Y_{n,d}} M_{m_\lambda}
\]

where $Y_{n,d}$ denotes the n-block Young diagrams of height at most d and m_λ the dimension of the corresponding representation of $\text{GL}(d)$.
Result 1: unordered tuples

Unordered n-tuples of d-level systems

$$\bigoplus_{\lambda \in Y_{n,d}} M_{m_\lambda}$$

where $Y_{n,d}$ denotes the n-block Young diagrams of height at most d and m_λ the dimension of the corresponding representation of $\text{GL}(d)$. Or explicitly: $Y_{n,d} = \left\{ \lambda; \lambda \in \mathbb{N}^d; \left[\begin{array}{c} \lambda_1 \geq \cdots \geq \lambda_d \geq 0 \\ \lambda_1 + \cdots + \lambda_d = n \end{array} \right] \right\}$
Result 1: unordered tuples

Unordered \(n \)-tuples of \(d \)-level systems

\[
\bigoplus_{\lambda \in Y_{n,d}} M_{m_\lambda}
\]

where \(Y_{n,d} \) denotes the \(n \)-block Young diagrams of height at most \(d \) and \(m_\lambda \) the dimension of the corresponding representation of \(\text{GL}(d) \). Or explicitly: \(Y_{n,d} = \{ \lambda; \lambda \in \mathbb{N}^d; \begin{bmatrix} \lambda_1 \geq \ldots \geq \lambda_d \geq 0 \\ \lambda_1 + \ldots + \lambda_d = n \end{bmatrix} \} \) and \(m_\lambda = \prod_{1 \leq i < j \leq d} \frac{\lambda_i - \lambda_j + j - i}{j - i} \).
Examples
Examples

Unordered triple of qutrits
Examples

Unordered triple of qutrits \[M_{10} \oplus M_8 \oplus \mathbb{C} \]
Examples

Unordered triple of qutrits \(M_{10} \oplus M_8 \oplus \mathbb{C} \)

Unordered pair of ququads
Examples

Unordered triple of qutrits \(M_{10} \oplus M_8 \oplus \mathbb{C} \)

Unordered pair of ququads \(M_{10} \oplus M_6 \)
Examples

Unordered triple of qutrits \(M_{10} \oplus M_8 \oplus \mathbb{C} \)
Unordered pair of ququads \(M_{10} \oplus M_6 \)
Unordered quad of qubits
Examples

Unordered triple of qutrits $M_{10} \oplus M_{8} \oplus \mathbb{C}$
Unordered pair of ququads $M_{10} \oplus M_{6}$
Unordered quad of qubits $M_{5} \oplus M_{3} \oplus \mathbb{C}$
Examples

Unordered triple of qutrits $M_{10} \oplus M_{8} \oplus \mathbb{C}$

Unordered pair of ququads $M_{10} \oplus M_{6}$

Unordered quad of qubits $M_{5} \oplus M_{3} \oplus \mathbb{C}$

<table>
<thead>
<tr>
<th>d</th>
<th>M_{5}</th>
<th>M_{3}</th>
<th>\mathbb{C}</th>
<th>M_{5}</th>
<th>M_{3}</th>
<th>\mathbb{C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M_{15}</td>
<td>M_{15}</td>
<td>M_{6}</td>
<td>M_{15}</td>
<td>M_{45}</td>
<td>M_{50}</td>
</tr>
<tr>
<td>4</td>
<td>M_{35}</td>
<td>M_{45}</td>
<td>M_{20}</td>
<td>M_{3}</td>
<td>M_{15}</td>
<td>M_{5}</td>
</tr>
<tr>
<td>5</td>
<td>M_{70}</td>
<td>M_{105}</td>
<td>M_{50}</td>
<td>M_{105}</td>
<td>M_{105}</td>
<td>M_{15}</td>
</tr>
<tr>
<td>6</td>
<td>M_{126}</td>
<td>M_{210}</td>
<td>M_{105}</td>
<td>M_{210}</td>
<td>M_{35}</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>M_{210}</td>
<td>M_{378}</td>
<td>M_{196}</td>
<td>M_{378}</td>
<td>M_{70}</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>M_{330}</td>
<td>M_{630}</td>
<td>M_{336}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proof, setting up

acts on $H = (C^d)^{\otimes n}$ in the obvious way. Also on $B(H)$ by $\pi(a) = \pi^{-1}a\pi$.

We wish to compute their equalizer $E = \{a; a \in B(H); \pi^{-1}a\pi = a \forall \pi \in S_n\}$.
Proof, setting up

\[S_n \text{ acts on } H = (\mathbb{C}^d)^\otimes n \text{ in the obvious way.} \]
Proof, setting up

S_n acts on $H = (\mathbb{C}^d)^{\otimes n}$ in the obvious way. Also on $B(H)$ by $\bar{\pi}(a) = \pi^{-1}a\pi$.
S_n acts on $H = (\mathbb{C}^d)^{\otimes n}$ in the obvious way.
Also on $B(H)$ by $\overline{\pi}(a) = \pi^{-1} a \pi$.
We wish to compute their equalizer
Proof, setting up

S_n acts on $H = (\mathbb{C}^d)^\otimes n$ in the obvious way. Also on $B(H)$ by $\overline{\pi}(a) = \pi^{-1}a\pi$. We wish to compute their equalizer

$$E = \{a; a \in B(H); \pi^{-1}a\pi = a \ \forall \pi \in S_n\}$$
Proof, crucial observation

\[E = \{ a; a \in B \left(H \right); \pi^{-1}a\pi = a \forall \pi \in S_n \} = \text{Rep} S_n \left(H, H \right) \]
Proof, crucial observation

\[E = \{a; a \in B(H); \quad \pi^{-1} a \pi = a \quad \forall \pi \in S_n\} \]
\[= \text{Rep}_{S_n}(H, H) \]
Proof, crucial observation

\[E = \{ a; \ a \in B(H); \ \pi^{-1}a\pi = a \ \forall \pi \in S_n \} \]
\[= \text{Rep}_{S_n}(H, H) \]

The equalizer coincides with the representation endomorphisms of \(H \)!
Proof, basic representation theory

\[\mathcal{H} \cong (C^d \otimes n) \sim = \bigoplus \lambda U_{\lambda} \]

where \(U_{\lambda} \) distinct irreducible representations.

Schur's lemma:
\[\text{Rep}(U_{\lambda}, U_{\mu}) = \begin{cases} C_{\mu} = \lambda & \text{if } \mu = \lambda \\ 0 & \text{otherwise} \end{cases} \]
Proof, basic representation theory

\[H = (\mathbb{C}^d)^\otimes n \cong \bigoplus_\lambda U^m_\lambda \]

where \(U_\lambda \) distinct irreducible representations.
Proof, basic representation theory

\[H = (\mathbb{C}^d)^n \cong \bigoplus_{\lambda} U^{m_{\lambda}}_{\lambda} \]

where \(U_\lambda \) distinct irreducible representations.

Schur’s lemma:

\[
\text{Rep}(U_\lambda, U_\mu) = \begin{cases}
\mathbb{C} & \mu = \lambda \\
0 & \mu \neq \lambda
\end{cases}
\]
Proof, putting it together

\[E = \text{Rep} S_n(H, H) \cong \bigoplus_{\lambda, \mu} \text{Rep} S_n(U^\lambda, U^\mu) \cong \bigoplus_{\lambda} M^\lambda m^\lambda \]

What are the irreducible representations \(U^\lambda \) and their multiplicities \(m^\lambda \)?

Answer is given by Schur-Weyl duality.
Proof, putting it together

\[E = \text{Rep}_{S_n}(H, H) \]
Proof, putting it together

\[E = \text{Rep}_{S_n}(H, H) \]
\[\cong \bigoplus_{\lambda, \mu} \text{Rep}_{S_n}(U^m_{\lambda}, U^m_{\mu}) \]
Proof, putting it together

\[E = \text{Rep}_{S_n}(H, H) \]
\[\cong \bigoplus_{\lambda, \mu} \text{Rep}_{S_n}(U_{\lambda}^{m_{\lambda}}, U_{\mu}^{m_{\mu}}) \]
\[\cong \bigoplus_{\lambda} M_{m_{\lambda}} \]
Proof, putting it together

\[E = \text{Rep}_{S_n}(H, H) \]
\[\cong \bigoplus_{\lambda, \mu} \text{Rep}_{S_n}(U^m_{\lambda}, U^m_{\mu}) \]
\[\cong \bigoplus_{\lambda} M_{m_{\lambda}} \]

What are the irreducible representations \(U_{\lambda} \) and their multiplicities \(m_{\lambda} \)?
Proof, putting it together

\[E = \text{Rep}_{S_n}(H, H) \]
\[\cong \bigoplus_{\lambda, \mu} \text{Rep}_{S_n}(U^m_\lambda, U^m_\mu) \]
\[\cong \bigoplus_{\lambda} M_{m_\lambda} \]

What are the irreducible representations \(U_\lambda \) and their multiplicities \(m_\lambda \)?
Answer is given by Schur-Weyl duality.
1. Unordered tuples
 ▶ Sketch of proof
2. Cycles
3. Unordered words
3-cycle of bits is a 4dit:

\{000, 001 = 010 = 100, 011 = 101 = 110, 111\}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C_3 on $B(C_2 \oplus C_2 \oplus C_2)$.)
3-cycle

A 3-cycle of bits is a 4dit:
A 3-cycle of bits is a 4dit:

\{000,
3-cycle

A 3-cycle of bits is a 4dit:

\{000, 001 = 010 = 100,\}

\(\text{coequalizer of obvious action of } C_3 \text{ on } B (C_2 \oplus C_2 \oplus C_2).\)
A 3-cycle of bits is a 4dit:

\[\{000, 001 = 010 = 100, 011 = 101 = 110, \} \]
A 3-cycle of bits is a 4dit:

\{000, 001 = 010 = 100, 011 = 101 = 110, 111\}
A 3-cycle of bits is a 4dit:
\{000, 001 = 010 = 100, 011 = 101 = 110, 111\}

What about a 3-cycle of qubits?
A 3-cycle of bits is a 4dit:
{000, 001 = 010 = 100, 011 = 101 = 110, 111}

What about a 3-cycle of qubits?

(= coequalizer of obvious action of C_3 on $B(\mathbb{C}^2 \oplus \mathbb{C}^2 \oplus \mathbb{C}^2)$.)
Quantum 3-cycle
Quantum 3-cycle

\[M_4 \oplus M_2 \oplus M_2 \]
Quantum 3-cycle

\[M_4 \oplus M_2 \oplus M_2 \]

\[|001\rangle + |010\rangle + |100\rangle \]
Quantum 3-cycle

\[M_4 \oplus M_2 \oplus M_2 \]

given by

\[|001\rangle + |010\rangle + |100\rangle \]

and

\[|001\rangle + e^{\frac{2\pi i}{3}} |010\rangle e^{\frac{4\pi i}{3}} |100\rangle \]
Quantum 3-cycle

$$M_4 \oplus M_2 \oplus M_2$$

- $|001\rangle + |010\rangle + |100\rangle$
- $|001\rangle + e^{\frac{2\pi i}{3}} |010\rangle e^{\frac{4\pi i}{3}} |100\rangle$
- $|001\rangle + e^{\frac{4\pi i}{3}} |010\rangle e^{\frac{2\pi i}{3}} |100\rangle$
Arbitrary cycles
Schur-Weyl does not apply.
Arbitrary cycles

Schur-Weyl does not apply.
How to compute multiplicities?
Arbitrary cycles

Schur-Weyl does not apply.
How to compute multiplicities?
By computing the character table.
Result 2: arbitrary cycles
Result 2: arbitrary cycles

\[m_k = \sum_{0 \leq j < n} e^{\frac{2\pi ijk}{n}} d^{\gcd(j,n)} \]
Result 2: arbitrary cycles

\[m_k = \sum_{0 \leq j < n} e^{\frac{2\pi ijk}{n}} d^{\gcd(j,n)} \]

With some number theory:
Result 2: arbitrary cycles

\[m_k = \sum_{0 \leq j < n} e^{\frac{2\pi i j k}{n}} d^{\gcd(j, n)} \]

With some number theory:

\[m_k = \frac{1}{n} \sum_{\ell \mid n} d_{\ell}^n \mu\left(\frac{\ell}{\gcd(\ell, k)}\right) \frac{\phi(\ell)}{\phi\left(\frac{\ell}{\gcd(\ell, k)}\right)}. \]
1. Unordered tuples
 - Sketch of proof

2. Cycles

3. Unordered words
Result 3: quantum unordered words
Result 3: quantum unordered words

\[\prod_n S_n \text{ acts on } B(\bigoplus_n (\mathbb{C}^d) \otimes n). \]
Result 3: quantum unordered words

\[\prod_n S_n \text{ acts on } B(\bigoplus_n (\mathbb{C}^d)^{\otimes n}). \]

With care we can compute the coequalizer:
Result 3: quantum unordered words

\[\prod_n S_n \text{ acts on } B(\bigoplus_n (\mathbb{C}^d)^\otimes n). \]

With care we can compute the coequalizer:

\[B(\ell^2) \bigoplus \prod_{\lambda \in Y^*} M_{m\lambda}. \]

\(Y^* \): Young diagrams of height at least 2.
Recap

1. Algebras for unordered types are given by coequalizers.
Recap

1. Algebras for unordered types are given by coequalizers.
2. They are more interesting than expected.
Recap

1. Algebras for unordered types are given by coequalizers.
2. They are more interesting than expected.
3. Representation theory of finite groups is a perfect fit to study them.
Thanks!
Thanks!

Questions?