# Oxford Quantum Talks Archive

**A topos for algebraic quantum theory**

*University of Nijmegen*

Categories, Logic and Foundations of Physics I, January 2008, Imperial College London

Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra A induces a topos in which the amalgamation of all its commutative subalgebras comprises a single //commutative// C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum X in the topos, which plays the role of a quantum phase space of the system. States on A become probability integrals on X, and self-adjoint elements of A define functions from X to the pertinent internal real numbers (the interval domain), allowing for a state-proposition pairing. Thus the quantum theory defined by A is turned into a classical theory by restriction to its associated topos.

[video] [streaming video] [slides]