
WG2.8 Worksthop, Kalvi, 2005/10/01-04

Multiset

discrimination for
acyclic data

Fritz Henglein

DIKU, University of Copenhagen

henglein@diku.dk

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Overview

� Discrimination: Partitioning input into
equivalence classes

� Basics: Types, equivalence classes,
discriminators

� Top-down MSD for unshared data

� Bottom-up MSD for shared data (briefly!)

� Discussion

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Multiset discrimination: The
problem

� Partition a sequence of inputs into equivalence
classes according to a given equivalence relation

� Examples:

� Same word occurrences in text

� Anagram classes of dictionary

� Equal terms or (sub)trees

� Equivalent states of finite state automaton

� Bisimulation classes of labeled transition system

� Note: Generalization of equality/equivalence to from
2 to n arguments.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Multiset discrimination: The
problem...

� Occurs frequently as auxiliary or key step in other
problems; e.g.,

� Compiling:

� Symbol table management

� Is there a duplicate identifier in a formal parameter list?

� Optimization: Replace multiple equivalent data structures

by (pointers to) a single data structure

� Is frequently solved by use of hashing, possibly in
connection with sorting

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Multiset discrimination: The
techniques

� Worst-case optimal techniques for multiset

discrimination without hashing or sorting

� Basic idea (for string discrimination): Partition

multiset of strings according to first character,

then refine blocks according to second

character and so on

WG2.8 Worksthop, Kalvi, 2005/10/01-04

MSD: Basic idea

Martin

Jan

Martin

Markus

Steffen

Martin

Martin

Martin

Markus

Martin

Martin

Martin

Markus

Martin

Martin

Martin

Markus

Martin

Martin

Martin

Martin

Jan

Steffen

Markus

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Basics: Values

� Universe U of first-order values:
� v ::= () | a | inl(v) | inr(v) | (v, v)

� a ::= <atomic values from finite set, e.g., characters>

� Examples of values:
(‘a’, ‘b’), inl(‘J’, inl(‘a’, inl(‘n’, inr())))

� Notation: The latter value is also denoted by [‘J’, ‘a’, ‘n’] and
“Jan”.

� Sizes of values (bit size of untyped representation):
(v,v’)	=	v	+	v’
inl(v)	=	inr(v)	= 1 +	v
()	= 0			
a	= O(log2	A), where a ε A	

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Basics: Types

� Type:
A partial equivalence relation (per) on U; that is,
a subset S of U together with an equivalence
relation on S

� Type expressions:
� T ::= 1 | T * T | T + T | A | t | µt.T |

| Bag(T) | Set(T)

� A ::= <atomic type names, e.g., Char>

� Abbreviations: Seq(T) = µt. 1 + T * t
String = Seq(Char)
Bool = 1+1

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Basics: Types...

� Each type expression denotes a type:
� A: primitive values with built-in equality (e.g.,

characters with character equality)

� 1: { () } with () = ()

� T * T’: { (t, t’): t ε T, t’ ε T’ } with canonically
induced equivalence

� T + T’: { inl(t): t ε T} U {inr(t’): t’ ε T’} with
canonically induced equivalence

� t: Type bound to t in context

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Basics: Types...

� continued:
� µt.T: smallest per X such that X = T[X/t]

� Bag(T): { [v1...vn]: vi ε T} where [v1...vn] =Bag(T)

[w1...wn] if vi =T wπ(i) for some permutation π for
all i=1..n.

� Set(T): {[v1...vn]: vi ε T} where [v1...vn] =Set(T)

[w1...wm] if:

� for all i there exists j such that vi =T wj, and

� for all j there exists i such that vi =T wj.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Example equivalences:

� Consider the sequence “Jann”. It is an
element of Seq(Char), Bag(Char) and
Set(Char):
� As element of Seq(Char) it is equivalent to “Jann”,

but neither “nJan” nor “Jna”.

� As element of Bag(Char) it is equivalent to “Jann”
and “nJan”, but not “Jna”.

� As element of Set(Char) it is equivalent to “Jann”,
“nJan”, and “Jna”.

� [[4, 9, 4], [1, 4, 4], [9, 4, 4, 9], [4, 1]] =Set(Set(int)

[[1, 4, 1], [9, 4, 9, 9, 4]]

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discriminator

� A discriminator for type T is a function

D[T]: ∀t. Seq(T*t) � Seq(Seq(t))
such that, if D[T][(l1,v1),...,(ln,vn)] = [V1,...,Vk]:

� V1... Vk is a permutation of [v1,..., vn];

� Iff li =T lj then there is a block Vh that contains both

vi and vj.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Top-down Discrimination

� Polytypic definition of discriminators:

� D[T] [(l1,v1)] = [[v1]] for any T (* Note: O(1)! *)

� D[A] xss = DA xss (given discriminator for A)

� D[1] [(l1,v1),...,(ln,vn)] = [[v1,..., vn]]

� D[T*T’] [((l11 , l12),v1),..., ((ln1 , ln2),vn)] =

let [B1,...,Bk] = D[T] [(l11 , (l12,v1)),..., (ln1 , (ln2,vn))]

let (W1,...,Wk) = (D[T’] B1, ..., D[T’] Bk)

in concat (W1,...,Wk)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Top-down discrimination...

� Polytypic definition contd.:
� D[T+T’] xss =

let (B1, B2) = splitTag xss
let (W1, W2) = (D[T] B1, D[T’] B2)
in concat (W1, W2)

� D[t] xss = Dt xss where Dt is discriminator bound
to t in context

� D[µt.T] xss = D[T] xss in context where t is bound
to D[µt.T] (recursive definition!)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discriminator combinators

� Note that the definitions of D[T+T’] and
D[T*T’] require D[T] and D[T’] only

� Thus for each type constructor *, + we can
define a corresponding discriminator
combinator, also denoted by *, + that
compose given discriminators for T, and T’ to
discriminators for T*T’ and T+T’, respectively.

� Note: Combinators are ML-typable, except
for recursively defined ones (require
polymorphic recursion)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Example: Sequence
discriminator

� D[Seq(T)] = D[µt. 1 + T * t] =
= D[1 + T * t] with t := D[Seq(T)]

= D[1] + D[T*t] =
= D[1] + D[T] * D[Seq(T)]

� That is, D[Seq(T)] = f where f is recursively defined:
f = D[1] + D[T] * f

� E.g., D[Seq(Char)] is the canonical string

discriminator.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discrimination for bags and
sets

� We can discriminate for bag equivalence by:

� sorting the input labels (each of which is a
sequence) according to a common sorting order,

then

� eliminating successive equivalent elements (for

set equivalence only), and

� applying ordinary sequence discrimination to the

thus sorted sequences

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Weak sorting

� Weak sorting sorts each sequence in a multiset
according to some common sorting order.

� Basic idea:
� Associate each element with all the sequences it occurs in.

� Then traverse the elements and add them to their
sequences.

� In this fashion all sequences will contain their elements in
the same order.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Optimal discrimination

� Theorem: D[T] xss executes in time O(|xss|)

for all type expressions T.

� Observation: The discriminators need not

always inspect all the input since

discrimination stops as soon as a singleton

equivalence class is identified.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Applications:

� D[Seq(Char)]: Finding unique words and all their
ocurrences in a text

� D[Bag(Char)]: Finding the anagram classes of a dictionary
(set of words)

� D[µt. 1 + Bag(t) + (t * t)]: Discrimination of simple type
expressions under associativity and commutativity of
product type constructor in linear time (Zibin, Gil, Considine
[2003], Jha, Palsberg, Shao, Henglein [2003])

� D[µt. (String * Bag(t)) + (String * Set(t)) + (String *Seq(t))]:
Discriminating terms with associative, associative-
commutative and associative-commutative-idempotent
operators in linear time (word problem)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Bottom-up discrimination

� Top-down discrimination is optimal for unshared
data.

� Consider a dag defined by:
n’0 = (n1, n1), n0 = (n1, n1)
n1 = (n2, n2)
...
nk = ((), ())

� Treating this as an element of
µt. (t+1) * (t+1) (trees!) would require time O(2k).

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Bottom-up discrimination

� The problem is that shared data (nodes, boxes,
references) may occur in multiple calls during top-
down MSD.

� Basic idea:
� Stratify nodes into ranks according to their heights in the

dag.

� Discriminate (partition) all nodes of the same rank in one
go. Do this in a bottom up fashion since discrimination of
rank k nodes requires discrimination according to rank k-1
nodes.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Bottom-up discrimination

� Extend the type language with Box(T)

(pointers to values of type T under value

equivalence)

and Ref(T) (pointers to values of type T with

pointer equivalence)

� Theorem: D[T] S xss for store (graph) S and

input sequence xss executes in time and

space O(|S| + |xss|).

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Applications:

� D[µt. Box(Seq(String * t)) * Bool)]: Minimization of acyclic
finite state automata (Revuz [1992], Cai/Paige [1995])

� Construction of Reduced Ordered Binary Decision
Diagrams (ROBDD) without hashing (Henglein [2005])

� Compacting garbage collection (Ambus [2004], see plan-
x.org)

� Type-directed pickling (Kennedy [2004], Elsman [2004])

� Compacting garbage collection (Appel/Goncalves [1993])

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References (Acyclic MSD):
Paige, Tarjan, ``Three Partition Refinement

Algorithms'', SIAM J. Computing, 16(6):973-989,
1987 (Section 2: lexicographic sorting)

Cai, Paige, ``Look Ma, no hashing, and no arrays
neither'', POPL 1991 (applications of string msd)

Cai, Paige, ``Using multiset discrimination to solve
language processing problems without hashing'',
TCS 145(1-2):189-228, 1995 (based on POPL 1991
paper)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References...

Paige, ``Optimal translation of user input in
dynamically typed languages'', unpublished
manuscript, 1991 (weak sorting, bag/set
equivalence, bottom-up msd for trees and dags)

Paige, ``Efficient translation of external input in a
dynamically typed language'', Proc. 13th World
Computer Congress, Vol. 1, 1994 (optimal-time
preprocessing of serialized input into internal data
structures)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References...

Paige, Yang, ``High level reading and data

structure compilation'', POPL 1997

(underpinnings and refinement of efficient

preprocessing)

Zibin, Gil, Considine, ``Efficient algorithms for

isomorphisms of simple types'', POPL 2003

(application of basic msd to isomorphism with

distributivity)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References (Cyclic MSD):
Note: Term ``MSD'' not used in works below.

Downey, Sethi, Tarjan, ``Variations on the
common subexpression problem'', JACM 1980
(list equivalence in cyclic graph)

Cardon, Crochemore, ``Partitioning a graph in
O(|A| log |V|, TCS 1982 (bag equivalence in
cyclic graph)

Paige, Tarjan, ``Three Partition Refinement
Algorithms'', SIAM J. Computing, 16(6):973-
989, 1987 (Section 3: coarsest partition
refinement; set equivalence in cyclic graph)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Conclusions

� Optimal discriminators that can be generated
automatically from definition of equivalence relation
(can be extended to richer language for equivalence
classes)

� Note: No pointers required!

� Practical performance of handcoded MSD typically
comparable with hashing (in some cases better)

� References in strongly typed languages can be
made discriminable without making them
comparable or hashable

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discussion
� MSD techniques (historically for strings and graphs) can be

”disassembled” into atomic components (*, +, µ,…) and then
orthogonally combined freely to arrive isassembly of MSD-
techniques

� Identification of type of discriminators has been crucial for
admitting inductive/polytypic definition of discriminators

� Discriminators stress ML-polymorphism: Reference
discrimination (semantically safe side effects, but prohibited by
ML reference typing) and discrimination for recursively defined
types (polymorphic recursion required)

� Reference discrimination (instead of equality) would be an easy
useful extension to ML without performance or semantic
penalties, yet support for linear-time discrimination (presently
requires O(n2) time using reference equality alone).

� Discriminators can be extended to cyclic data at cost of log(n)
factor. Requires more refined algorithmic techniques.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Open questions

� Automatic generation of efficient (not handcoded)

discriminators ; e.g., by partial evaluation

� Algorithm engineering: I/O, cache-sensitivity analysis

� Empirical evaluation of MSD in a variety of applications

(e.g., ROBDDs, coalescing garbage collection, run-time

verification, type checking

� Identification of scenarios where ‘weak’ machine model

required by MSD is an advantage

� Extension of MSD to scoped values (e.g., alpha-

congruence), other extensions

WG2.8 Worksthop, Kalvi, 2005/10/01-04

More information

� Paper under preparation.

See www.plan-x.org/msd

