Multiset
discrimination for
acyclic data

Fritz Henglein
DIKU, University of Copenhagen
henglein@diku.dk

Overview

e Discrimination: Partitioning input into
equivalence classes

e Basics: Types, equivalence classes,
discriminators

e Top-down MSD for unshared data
e Bottom-up MSD for shared data (briefly!)
e Discussion

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Multiset discrimination: The
problem

e Partition a sequence of inputs into equivalence
classes according to a given equivalence relation

e Examples:
Same word occurrences in text
Anagram classes of dictionary
Equal terms or (sub)trees
Equivalent states of finite state automaton
Bisimulation classes of labeled transition system

e Note: Generalization of equality/equivalence to from
2 to n arguments.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Multiset discrimination: The
problem...

e Occurs frequently as auxiliary or key step in other
problems; e.qg.,
Compiling:
Symbol table management
Is there a duplicate identifier in a formal parameter list?
Optimization: Replace multiple equivalent data structures
by (pointers to) a single data structure
e |s frequently solved by use of hashing, possibly in
connection with sorting

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Multiset discrimination: The
techniques

e Worst-case optimal techniques for multiset
discrimination without hashing or sorting

e Basic idea (for string discrimination): Partition
multiset of strings according to first character,
then refine blocks according to second
character and so on

WG2.8 Worksthop, Kalvi, 2005/10/01-04

MSD: Basic idea

Martin
Jan
Martin
Markus
Steffen
Martin

Martin Martin Martin
Martin | | Martin | | Martin
Markus Markus | | Markus
Martin Martin Martin
Jan

Steffen

WG2.8 Worksthop, Kalvi, 2005/10/01-04

A 4

Martin
Martin

Martin

Markus

Basics: Values

e Universe U of first-order values:
z=()a/inl(v) |inr(v) | (v, v)

.= <atomic values from finite set, e.g., characters>

e Examples of values:
(‘a’, ‘b)), inl("J’, inl(‘a’, inl(‘\n’, inr())))

e Notation: The latter value is also denoted by [V, ‘@),
‘Jan’.

e Sizes of values (bit size of untyped representation):
[(v.V)] = |v] + |V]
finl(v)] = [inr(v)[=1 + v/
[0] =0
lal = O(log, [A]), where a € A

1

n’J and

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Basics: Types

o Type:
A partial equivalence relation (per) on U; that is,
a subset S of U together with an equivalence
relation on S

e Type expressions:
T:=1|T*T|T+T/A/t/utT]|
| Bag(T) | Set(T)
A = <atomic type names, e.g., Char>
e Abbreviations: Seq(T)=ut. 1+ T "t
String = Seq(Char)
Bool = 1+1

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Basics: Types...

e Each type expression denotes a type:

A: primitive values with built-in equality (e.g.,
characters with character equality)

1:{ () Jwith () = ()

T*T2{(@¢t):tel, t'eT }with canonically
iInduced equivalence

T+ T:{inlit):teT}Uf{inrt):t' & T’} with
canonically induced equivalence

t. Type bound to t in context

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Basics: Types...

e continued:
ut. T: smallest per X such that X = T[X/l]
Bag(T): { [v;...v,]: v, € T} where [v,..V,] =g,o7)
[wi...wn]if v, = w_, for some permutation = for
all i=1..n.
Set(T): {[v,...v,]: vie T} where [v,...V,] =g
[w,..w_]If:

for all i there exists j such that v, = w;, and
for all j there exists / such that v, = w,.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Example equivalences:

e Consider the sequence “Jann”. ltis an
element of Seq(Char), Bag(Char) and
Set(Char):

As element of Seq(Char) it is equivalent to “Jann’,
but neither “ndan” nor ‘Jna’.

As element of Bag(Char) it is equivalent to “‘Jann”
and “ndan”, but not “dna”.

As element of Set(Char) it is equivalent to “Jann”’,
“‘ndan”, and ‘Jna”.

® [[4, 9, 4], [1, 4, 4], [9, 4, 4, 9], [4, 1]] =Set(Set(int)
[[1,4, 1], [9, 4,9, 9, 4]]

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discriminator

e A discriminator for type T is a function
D[T]: vt. Seq(T™t) =2 Seq(Seq(t))
such that, it D[T][(l.,v,),....,(l.,v.)] = [V,,...,V.]:
V,... V. is a permutation of [v,,..., V],

Iff |, =1 | then there is a block V), that contains both
v;and v,

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Top-down Discrimination

e Polytypic definition of discriminators:
D[T] [(l.,v,)] = [[v,]]for any T (* Note: O(1)! *)
D[A] xss = D, xss (given discriminator for A)
D] [(1,v1), s (b V)] = [V VAl

DIT=TT[((11, 1:2):Vi)seees (115 102), V)] =

let [B,,....B] =D[T][(I;1, (112V1))s-s (Ih1, (li2:V))]
let (W,,..,W,) = (D[T’] B,, ..., D[T] B,)

in concat (W,,...,W,)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Top-down discrimination...

e Polytypic definition contd.:
D[T+T’] xss =
let (B,, B,) = splitTag xss
let (W1, W2) = (D[T] B,, D[T’] B,)
in concat (W1, W2)

D[t] xss = D, xss where D, is discriminator bound
to tin context

D[ut. T] xss = D[T] xss in context where tis bound
to D[ut.T] (recursive definition!)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discriminator combinators

e Note that the definitions of D[T+T’] and
D[T*T’| require D[T]and D[T’] only

e Thus for each type constructor *, + we can
define a corresponding discriminator
combinator, also denoted by *, + that
compose given discriminators for T, and T’to
discriminators for T*T"and T+1T’, respectively.

e Note: Combinators are ML-typable, except
for recursively defined ones (require
polymorphic recursion)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Example: Sequence
discriminator

o D[Seq(T)]=Dfut. 1+ T *t] =
=D[1+ T *tjwith t := D[Seq(T)]
=D[1] + D[T"t] =
= D[1] + D[T] * D[Seq(T)]
e Thatis, D[Seq(T)] = fwhere fis recursively defined:
f=D[1] + D[T] * f
e E.g., D[Seq(Char)]is the canonical string
discriminator.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discrimination for bags and
sets

e We can discriminate for bag equivalence by:

sorting the input labels (each of which is a
sequence) according to a common sorting order,
then

eliminating successive equivalent elements (for
set equivalence only), and

applying ordinary sequence discrimination to the
thus sorted sequences

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Weak sorting

e Weak sorting sorts each sequence in a multiset
according to some common sorting order.

e Basic idea:
Associate each element with all the sequences it occurs in.

Then traverse the elements and add them to their
sequences.

In this fashion all sequences will contain their elements in
the same order.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Optimal discrimination

e Theorem: D[T] xss executes in time O(|xss|)
for all type expressions T.

e Observation: The discriminators need not
always inspect all the input since
discrimination stops as soon as a singleton
equivalence class is identified.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Applications:

D[Seq(Char)]: Finding unique words and all their
ocurrences in a text

D[Bag(Char)]: Finding the anagram classes of a dictionary
(set of words)

D[ut. 1 + Bag(t) + (t * t)]: Discrimination of simple type
expressions under associativity and commutativity of
product type constructor in linear time (Zibin, Gil, Considine
[2003], Jha, Palsberg, Shao, Henglein [2003])

Dlut. (String * Bag(t)) + (String * Set(t)) + (String *Seq(t))]:
Discriminating terms with associative, associative-
commutative and associative-commutative-idempotent
operators in linear time (word problem)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Bottom-up discrimination

e Top-down discrimination is optimal for unshared
data.

e Consider a dag defined by:

N’y = (Ny, Ny), Ny = (Ny, Ny)
N, = (N, ny)

n = ((). ()

e Treating this as an element of
ut. (t+1) * (t+1) (trees!) would require time O(2¥).

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Bottom-up discrimination

e The problem is that shared data (nodes, boxes,

references) may occur in multiple calls during top-
down MSD.

e Basic idea:

Stratify nodes into ranks according to their heights in the

dag.

Discriminate (partition) all nodes of the same rank in one

go. Do this in a bottom up fashion since discrimination of

rank k nodes requires discrimination according to rank k-1
nodes.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Bottom-up discrimination

e Extend the type language with Box(T)
(pointers to values of type T under value
equivalence)
and Ref(T) (pointers to values of type T with
pointer equivalence)

e Theorem: D[T] S xss for store (graph) S and
iInput sequence xss executes in time and
space O(/S/ + [xss]).

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Applications:

D[ut. Box(Seq(String *t)) * Bool)]: Minimization of acyclic
finite state automata (Revuz [1992], Cai/Paige [1995])

Construction of Reduced Ordered Binary Decision
Diagrams (ROBDD) without hashing (Henglein [2005])

Compacting garbage collection (Ambus [2004], see plan-
X.0rg)

Type-directed pickling (Kennedy [2004], Elsman [2004])
Compacting garbage collection (Appel/Goncalves [1993])

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References (Acyclic MSD):

Paige, Tarjan, Three Partition Refinement
Algorithms", SIAM J. Computing, 16(6):973-989,
1987 (Section 2: lexicographic sorting)

Cai, Paige, Look Ma, no hashing, and no arrays
neither", POPL 1991 (applications of string msd)

Cai, Paige, "Using multiset discrimination to solve
language processing problems without hashing",
TCS 145(1-2):189-228, 1995 (based on POPL 1991

paper)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References...

Paige, Optimal translation of user input in
dynamically typed languages", unpublished
manuscript, 1991 (weak sorting, bag/set
equivalence, bottom-up msd for trees and dags)

Paige, Efficient translation of external input in a
dynamically typed language", Proc. 13th World
Computer Congress, Vol. 1, 1994 (optimal-time
preprocessing of serialized input into internal data
structures)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References...

Paige, Yang, High level reading and data
structure compilation”, POPL 1997
(underpinnings and refinement of efficient
preprocessing)

Zibin, Gil, Considine, Efficient algorithms for
isomorphisms of simple types", POPL 2003
(application of basic msd to isomorphism with
distributivity)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

References (Cyclic MSD):

Note: Term "MSD" not used in works below.

Downey, Sethi, Tarjan, Variations on the
common subexpression problem", JACM 1980
(list equivalence in cyclic graph)

Cardon, Crochemore, Partitioning a graph in
O(/A] log |V/], TCS 1982 (bag equivalence in
cyclic graph)

Paige, Tarjan, Three Partition Refinement
Algorithms", SIAM J. Computing, 16(6):973-
989, 1987 (Section 3: coarsest partition
refinement; set equivalence in cyclic graph)

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Conclusions

e Optimal discriminators that can be generated
automatically from definition of equivalence relation
(can be extended to richer language for equivalence
classes)

e Note: No pointers required!

e Practical performance of handcoded MSD typically
comparable with hashing (in some cases better)

e References in strongly typed languages can be
made discriminable without making them
comparable or hashable

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Discussion

MSD techniques (historically for strings and graphs) can be
"disassembled” into atomic components (*, +, W,...) and then
orthogonally combined freely to arrive isassembly of MSD-
techniques

|dentification of type of discriminators has been crucial for
admitting inductive/polytypic definition of discriminators

Discriminators stress ML-polymorphism: Reference
discrimination (semantically safe side effects, but prohibited by
ML reference typing) and discrimination for recursively defined
types (polymorphic recursion required)

Reference discrimination (instead of equality) would be an easy
useful extension to ML without performance or semantic
penalties, yet support for linear-time discrimination (presently
requires O(n?) time using reference equality alone).

Discriminators can be extended to cyclic data at cost of log(n)
factor. Requires more refined algorithmic techniques.

WG2.8 Worksthop, Kalvi, 2005/10/01-04

Open questions

Automatic generation of efficient (not handcoded)
discriminators ; e.g., by partial evaluation

Algorithm engineering: I/O, cache-sensitivity analysis

Empirical evaluation of MSD in a variety of applications
(e.g., ROBDDs, coalescing garbage collection, run-time
verification, type checking

|dentification of scenarios where ‘weak’ machine model
required by MSD is an advantage

Extension of MSD to scoped values (e.g., alpha-
congruence), other extensions

WG2.8 Worksthop, Kalvi, 2005/10/01-04

More information

e Paper under preparation.
See www.plan-x.org/msd

WG2.8 Worksthop, Kalvi, 2005/10/01-04

