Amortized Heap-Space Analysis
for First-Order Functional Programs

O. Shkaravska

Inst. of Cybernetics
at Tallinn Univ. of Technology

Kalvi, 2005

Amortization for Heap Consumption

Outline

Q Motivation
@ Amortization-based Evaluation of Heap Consumption
@ Previous Work

Amortization for Heap Consumption

Outline

Q Motivation
@ Amortization-based Evaluation of Heap Consumption
@ Previous Work

9 Results

@ Heap-aware Type System for Programs over Lists
@ Soundness Theorem

Amortization for Heap Consumption

Outline

Q Motivation
@ Amortization-based Evaluation of Heap Consumption
@ Previous Work

9 Results

@ Heap-aware Type System for Programs over Lists
@ Soundness Theorem

Some problems are reported “on-line”...

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

Practical Aspect

Heap-space deficit in run-time leads to crash.

@ Small devices: smartcards, mobile phones, ...
@ afew programs are expected to be run on one machine,

Solution: evaluate heap consumption before running programs.

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

What is Amortization

@ Given: a sequence of operations.

@ Find: the cost of the entire sequence.
@ Remark:
@ The actual cost t;, not that important!

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

What is Amortization

@ Given: a sequence of operations.

@ Find: the cost of the entire sequence.
@ Remark:

@ The actual cost t;, not that important!
@ The amortized cost a;, s.t. &_,a > & _,t.

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

What is Amortization

@ Given: a sequence of operations.

@ Find: the cost of the entire sequence.
@ Remark:
@ The actual cost t;, not that important!

o The amortized cost a;, s.t. ¥1_ a; > ¥__t;.

Banker’s View

If ci :=a; —t; > 0, it is called a credit.

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

What is Amortization

@ Given: a sequence of operations.

@ Find: the cost of the entire sequence.
@ Remark:

@ The actual cost t;, not that important!
@ The amortized cost a;, s.t. &_,a > & _,t.

Banker’s View
If ci :=a; —t; > 0, it is called a credit.

Data: Do, ..., Dj, ...
A Potential Function ¢ : D; — T; > 0.

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

What is Amortization

@ Given: a sequence of operations.

@ Find: the cost of the entire sequence.
@ Remark:

@ The actual cost t;, not that important!
@ The amortized cost a;, s.t. &_,a > & _,t.

Banker’s View
If ci :=a; —t; > 0, it is called a credit.

Data: Do, ..., Dj, ...
A Potential Function ¢ : D; — T; > 0.

Ci=Ti—-Ti1
Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

Amortization : fine computable(!) resource bounds,
resource information in types

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

Amortization : fine computable(!) resource bounds,
resource information in types

f x= matchxwith Nl = cons(1,N)
|cons(h, t) = cons(1, cons(2, Ni 1))

1, length=0

The bound is: T (length) = { 2, length > 1

Amortization for Heap Consumption

Motivation Amortization-based Evaluation of Heap Consumption

Previous Work

Amortization : fine computable(!) resource bounds,
resource information in types

f x= matchxwith Nl = cons(1,N)
|cons(h, t) = cons(1, cons(2, Ni 1))

- _J 1, length=0
The bound is: T (length) = { 2. length > 1,
Typing: L(Int, k), 1 — L(Int, 0), O

We assign:
@ 1 extra heap unit before the computation,
@ An extra heap unit to the first element: k(1) = 1,
@ Other elements do not need extras: k(i) =0, i > 2.

Amortization for Heap Consumption

Motivation :)
Amortization-based Evaluation of Heap Consumption

Previous Work

Amortization (mainly for Time) - Reading in Progress

@ Basic:

@ Cormen, Leiserson, Rivest - “Introduction to algorithms”
@ Okasaki - “Purely Functional Data Structures “

Amortization for Heap Consumption

Motivation :)
Amortization-based Evaluation of Heap Consumption

Previous Work

Amortization (mainly for Time) - Reading in Progress

@ Basic:

@ Cormen, Leiserson, Rivest - “Introduction to algorithms”
@ Okasaki - “Purely Functional Data Structures “

fine treatment of recursive calls
(binary increment in logarithm)

Amortization for Heap Consumption

Motivation :)
Amortization-based Evaluation of Heap Consumption

Previous Work

Amortization (mainly for Time) - Reading in Progress

@ Basic:
@ Cormen, Leiserson, Rivest - “Introduction to algorithms”
@ Okasaki - “Purely Functional Data Structures “
fine treatment of recursive calls
(binary increment in logarithm)
Okasaki: lazy-eval. with suspesnions

Amortization for Heap Consumption

Motivation :)
Amortization-based Evaluation of Heap Consumption

Previous Work

Amortization (mainly for Time) - Reading in Progress

@ Basic:
@ Cormen, Leiserson, Rivest - “Introduction to algorithms”
@ Okasaki - “Purely Functional Data Structures “
fine treatment of recursive calls
(binary increment in logarithm)
Okasaki: lazy-eval. with suspesnions
@ Schoenmakers - PhD thesis “Data Structures
and Amortized Complexity in a Functional Setting”:

@ algebraic approach

@ linear usage

o fine treatment of compositions/recursive calls
@ time

Amortization for Heap Consumption

Motivation)
Amortization-based Evaluation of Heap Consumption
Previous Work

Problem: Fine Treatment of Recursive Calls

| can not type-check the increment-for-logarithm example

in the presented type system!
The solution exists, but it leads to singleton types.
May be there are other solutions: later ...

Amortization for Heap Consumption

Motivation :)
Amortization-based Evaluation of Heap Consumption

Previous Work

Hofmann-Jost System for Linear Heap Bounds

Amortization for Heap Consumption

Motivation

Amortization-based Evaluation of Heap Consumption
Previous Work

Hofmann-Jost System for Linear Heap Bounds

The program “copy”
copy x= matchxw th
Nil = Nil
|cons(h,t) = let y=copy t
incons(h,y)
has typing: L(Int, 1), 0 — L(Int, 0), O:
assign to each element of an input list - 1 extra heap unit.

Amortization for Heap Consumption

Motivation S)
Amortization-based Evaluation of Heap Consumption

Previous Work

Hofmann-Jost System for Linear Heap Bounds

The program “copy”
copy x= matchxw th
Nil = Nil
|cons(h,t) = let y=copy t
incons(h,y)
has typing: L(Int, 1), 0 — L(Int, 0), O:
assign to each element of an input list - 1 extra heap unit.

| A\

Semantics

Typing L(Int, k), ko — L(Int, k"), kj means
@ heap consumption k | + ko,
@ gaink'l" 4 k|

-

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists
Soundness Theorem

Results

What Amortization Brings to Types

Credits are type annotaions carrying resource information.

Zero-Order, Sized and Unsized, Annotated Types »

T =Int|L(T, k)| L(T, k)
k:N-— R"
k(i) is the credit of the ith cons-cell.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

What Amortization Brings to Types

Zero-Order, Sized and Unsized, Annotated Types »
T =Int | L(T, k) | L(T, k)

k:N— R

k(i) is the credit of the ith cons-cell.

Z::l k(i) is the potential of a list of integers

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

What Amortization Brings to Types

Zero-Order, Sized and Unsized, Annotated Types
T =Int | L(T, k) | L(T, k)

k:N— R

k(i) is the credit of the ith cons-cell.

Z::l k(i) is the potential of a list of integers

k is a constant in HJ system.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists
Soundness Theorem

Results

What Amortization Brings to Types

Credits are type annotaions carrying resource information.

Zero-Order, Sized and Unsized, Annotated Types

T =Int | L(T, k) | L(T, k)

k:N— R

k(i) is the credit of the ith cons-cell.

Z::l k(i) is the potential of a list of integers
k is a constant in HJ system.

The hint for Type-checking

Unary Functions over Lists.
Let F has a bounded on [a, oo] derivaive, with 0 < a < 1.

v

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

What Amortization Brings to Types

Zero-Order, Sized and Unsized, Annotated Types
T =Int | L(T, k) | L(T, k)

k:N— R

k(i) is the credit of the ith cons-cell.

Z::l k(i) is the potential of a list of integers

k is a constant in HJ system.

The hint for Type-checking

Unary Functions over Lists.
Let F has a bounded on [a, oo] derivaive, with 0 < a < 1.
Perform type-checking for input with k(x) = F’(x).

=a

Total consumption is Z!Zl k(i)~ [_ k(x)dx =F(x)—-F(a)

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Typing Judgement

Judgement

e: T
rnt n’
7 A 7
I, A — annotated contexts,
T — an annotated type, n, n’ — nonnegative numbers

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Typing Judgement

Judgement

e: T
rnt n’
7 [A 7
I, A — annotated contexts,
T — an annotated type, n, n’ — nonnegative numbers

Example — destructive length
l ength’ x =
matchxwith Nl = 0
|cons(h,t)@_= let y=length't
inl+y

J

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Typing Judgement

Judgement

e: T
Lntk
b A b

I, A — annotated contexts,
T — an annotated type, n, n’ — nonnegative numbers

!

| \

Example — destructive length

l ength’ x =
matchxwith Nl = 0
|cons(h,t)@_= let y=length't
inl+y

! o
X - Ly(Int, 0), 0 [I ength’ x: Int] ,

x : Li(Int, 1)

o

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists
Results
Soundness Theorem

Some Rules: Constructor

heT,t: L(T, k), k(I +1)+1F EO’;S((Th) tt);:zL(lf.l(q’:))) , 0

where zero-annotation map is efined incductively:

Z(Int) := Int,
Z(L(T, k)) :=L(2(T), 0),
[Z(M)](x) == Z(T(x)).

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

First-Order Types and Function Call

Li(T, k/k"), ko — Lip(T', k'), k§ || w(l, I, k, kK", ko, k', kg)

| is the length of input,
I” is the length of output

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

First-Order Types and Function Call

Li(T, k/k"), ko — Lip(T', k'), k§ || w(l, I, k, kK", ko, k', kg)

| is the length of input,
I” is the length of output

The predicate ¥ manages mutual and recursive calls.
For type-checking may have, say, the form I’ = p(l).

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

First-Order Types and Function Call

Li(T, k/k"), ko — Lip(T', k'), k§ || w(l, I, k, kK", ko, k', kg)

| is the length of input,
I” is the length of output

The predicate ¥ manages mutual and recursive calls.
For type-checking may have, say, the form I’ = p(l).

HJ system: no need, because annotations are constants,
no dependency on the position of an element.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

First-Order Types and Function Call

Li(T, k/k"), ko — Lip(T', k'), k§ || w(l, I, k, kK", ko, k', kg)
W(Ia Ila k, kl’a kOa kla k({))
) : L (T, K)
X L|(T, k”)

x : Ly(T, k), ko F k!

| is the length of input,
I” is the length of output

The predicate ¥ manages mutual and recursive calls.
For type-checking may have, say, the form I’ = p(l).

HJ system: no need, because annotations are constants,
no dependency on the position of an element.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

W is complex to infer

We want to use the type system for

“parametric type-checking”

E.g. : | expect that my program
@ has something like quadratic heap consumption,

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

W is complex to infer

We want to use the type system for

“parametric type-checking”

E.g. : | expect that my program

@ has something like quadratic heap consumption,
the task: to obtain ?a x2+?b x+7c for heap,

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

W is complex to infer

We want to use the type system for

“parametric type-checking”

E.g. : | expect that my program

@ has something like quadratic heap consumption,
the task: to obtain ?a x2+?b x+7c for heap,

@ and has the length of the output is linear
w.r.t. the length of an input,
the task: to obtain ?d x+7d’ for output length.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Skip it: Destructive match

eliT'
ntk n’
, [A]

MLh:T,t:Li_o(T, k),n+1+k(l)
(+the benign sharing for Matchsx)

€y : T!
A, h: T, t: LT, K"

[matchx with T
Nil = e
|cons(h,t)@_ = e,

A, x: Ly(T, k)

Mt: L(T,k),nkE , n’

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Let: Sharing is not a Monster

Int @ Int = Int

Li(T1, k1) @ Li(T2, kz) = Li(T1 @ T2, ki + ko)

L(T1, k1) ® L(T2, ko) = L(T1 & T2, k1 + kz)

(r1 W I'z)(x) = T1(x) x € dom(I'¢) \ dom(T')
Fo(X) x € dom(I'5) \ dom(r'y)
M1(x)+T2(x) x € dom(ly) Nndom(T,)

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Skip it: Let

MN,nkF elA:lTO , No
M, X : Tg, Ng Az,iz:—.;('l'o)_’n,
(+the benign sharing for Letx)
let x=e; :T7
Ine;
MNul,, ntk ALUA, , n’

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Some Rules: Budget

Fnk e:T’n, r>0 .

A rnt e: T n’
n<r r'<n ’ A |

e: T , e: T ,
r,rl—[A,],r F,n+rl—[A],n+r

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Shuffle

e: T/
A, X L|(T, k!

I',x:L|(T,k),n|—[)],n’ k > k”

. !
Mox: Li(T, k —k”), n+ 33 k(i) [A x(:a L|T(T k’)] o

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Some Rules: Weakening

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Well-defined First-Order Signature

Li(T, k/k"), ko — Lp(T, k"), kg || w(l, I, k, K", ko, K', K§)

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists
Soundness Theorem

Results

Well-defined First-Order Signature

A first-order signature ¥ is well-defined

if for any function f € dom(X) with X(f) =

Li(T, k/k"), ko — Lp(T, k"), kg || w(l, I, k, K", ko, K', K§)
one can successfully type-check the body es of f :

e (x) : Lu(T', k')

x: Li(T, k), ko - [—= N0

!
akO

provided that W(l, I, k, k”, ko, k', k{) holds.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Example: Destructive Half

leaves every 2nd element of an input list

half x= matchxwth
Nil = Nil
|cons(h,t)@_= matcht with
Nil = Nl
| cons(hh, tt)@_ =
let y=half tt
i ncons(hh, y)

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Example: Destructive Half

leaves every 2nd element of an input list

half x= matchxwth
Nil = Nil
|cons(h,t)@_= matcht with
Nil = Nl
| cons(hh, tt)@_ =
let y=half tt
i ncons(hh, y)
has typlng Ll(T7 k/k”)a 0 — L|’(T7 k,)a 0 || 1" = p(l)’
1

where p(l) = [IEJ andk =k'=0,k" = 5

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Example: Logarithm

l og x =
let y=half x
in mtchywith Nl = Nil
|cons(h,t) = let z=logy
incons(l, z)
If list x has length I, then the program frees | heap units
but consumes O(log,(1)).

Type-checked the credit functions k(x) = ;, k"(x) =1,
have found that a = 2.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem(s): Is the Type System Refineable?

@ merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem(s): Is the Type System Refineable?

@ merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

@ non-strict sizes (if-rule is restrictive, ...)???

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem(s): Is the Type System Refineable?

@ merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

@ non-strict sizes (if-rule is restrictive, ...)???
@ add the number of recursive calls as a parameter for
first-order types?

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem(s): Is the Type System Refineable?

@ merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

@ non-strict sizes (if-rule is restrictive, ...)???

@ add the number of recursive calls as a parameter for
first-order types?

@ (very) dependent types for the fine “if”-rule and recursive
calls?

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem(s): Is the Type System Refineable?

@ merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

@ non-strict sizes (if-rule is restrictive, ...)???

@ add the number of recursive calls as a parameter for
first-order types?

@ (very) dependent types for the fine “if”-rule and recursive
calls?

@ verify calls “in-the-context” for fine treatment of
compositions?

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Potential = the sum of the credits of all nodes

The list [[10, 20, 30], [10]]

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Potential = the sum of the credits of all nodes

The list [[10, 20, 30], [10]]
of type L(L(Int, k1), k) with ki (X) = x, ka(X) = 2x

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Potential = the sum of the credits of all nodes

The list [[10, 20, 30], [10]]
of type L(L(Int, k1), k) with ki (X) = x, ka(X) = 2x
has the potential 2- 1 + (1) + 2- 2 + (1+2+3)

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Potential is a dynamic notion

® : Heap x Val x T — R* is defined as
d(h, v, Int) =0,

o(h, null, Lo(T, k)) =0,
o(h, £, L(T, k)) — ¢(h, h.¢.HD, T) k() +
o(h, he.TL, Lj_q(T, k))

for ¢ # null,

¢(h, ¢, L(T, k)) - d>(h, ¢, Ly(T, k)), where | = D(h, £).

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Potential is a dynamic notion

® : Heap x Val x T — R* is defined as
d(h, v, Int) =0,

o(h, null, Lo(T, k)) =0,
o(h, £, L(T, k)) — ¢(h, h.¢.HD, T) k() +
o(h, he.TL, Lj_q(T, k))

for ¢ # null,

¢(h, ¢, L(T, k)) - d>(h, ¢, Ly(T, k)), where | = D(h, £).

Extended to stack environments and typing contexts:
o(h, E, T) = Syedom(r) (N EX), T(X)).

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

Soundness with the Feelist Model

I |:| } o
} n

— ‘ the output potential
? § ¢(h’, v, T>
//// Q(h’ E, r) eva. e
— : } o(hE, Aa)
] =] ’ ’

the intact part _

of the fredlist: the intact part
] g units of th_efreellst.

g units

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem: Which Prover

| trust myself, but:
it would be more convenient to prove the soundness of the
present system using a proof assistant,

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem: Which Prover

| trust myself, but:

it would be more convenient to prove the soundness of the
present system using a proof assistant,

proviso: the operational semantics was already incoded.

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem: Which Prover

| trust myself, but:

it would be more convenient to prove the soundness of the
present system using a proof assistant,

proviso: the operational semantics was already incoded.

... and the things become more complicated...

Amortization for Heap Consumption

Heap-aware Type System for Programs over Lists

Results
Soundness Theorem

The Problem: Which Prover

| trust myself, but:

it would be more convenient to prove the soundness of the
present system using a proof assistant,

proviso: the operational semantics was already incoded.

... and the things become more complicated...

General question:
If one needs to encode the gentleman’s set:
@ the syntax of the language,
@ the operational semantics,
@ the semantics of a typing judgement,
@ the soundness proofs,
which prover to choose?

Amortization for Heap Consumption

Summary

Summary

@ We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

Amortization for Heap Consumption

Summary

Summary

@ We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

@ It generalises Hofmann-Jost type system
by making annotations variable.

Amortization for Heap Consumption

Summary

Summary

@ We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

@ It generalises Hofmann-Jost type system
by making annotations variable.

@ The system is sound.

Amortization for Heap Consumption

Summary

Summary

@ We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

@ It generalises Hofmann-Jost type system
by making annotations variable.

@ The system is sound.

Future Work
@ Conider other than lists data structures.

Amortization for Heap Consumption

Summary

Summary

@ We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

@ It generalises Hofmann-Jost type system
by making annotations variable.

@ The system is sound.

Future Work
@ Conider other than lists data structures.

@ Adjust the approach for an object-oriented setting
(code structures which have funcional equivalents,
(co)algebraic data types,...)

Amortization for Heap Consumption

	Motivation
	Amortization-based Evaluation of Heap Consumption
	Previous Work

	Results
	Heap-aware Type System for Programs over Lists
	Soundness Theorem

	Summary

