
Haxell
adding regular types to Haskell

Matthew Fuchs
(Satnam Singh)

Microsoft

• Original goal – an Xduce style type system
for a message passing language

• New goal – full regular type integration into
Haskell
– Smooth integration of regular and algebraic

types
– Support for infinite hedges

Other Work

• Similar to Cduce in pattern matching
– Does not support negative patterns

• Very similar to XHaskell except
– intend to integrate type checking into the

compiler, rather than continue with generating
types

– intend to support parametric polymorphism
– will require less type annotations

• the compiler “knows” which subsumption checks
need to be made

Notation
• <foo>True</foo><bar>10</bar><bar>20</bar><

baz>“some text”</baz>
• :foo[True] :bar[10] :bar[20] :baz[“some text”]
• Type:

– (| :foo[Bool], :bar[Integer]*, :baz[String] |)
– types nailed down quite specifically

• Change all the element names from foo to oof,
bar to rab, and baz to zab:
– flipName:: (| :foo[Bool], :bar[Integer]*, :baz[String] |) ->

(| :oof[Bool], :rab[Integer]*, :zab[String] |)
– even though contents of foo, bar, and baz are

irrelevant

Type variables

• Haskell type variables:
– (| :foo[t1], :bar[t2]*, :baz[t3] |)

• flipName:: (| :foo[t1], :bar[t2]*, :baz[t3] |) -> (|
:oof[t1], :rab[t2]*, :zab[t3] |)

• Add elements:
– addem (|:foo[_], :bar[x]*, :baz[_]|) = fold (+) x

• Types:
– addem:: (| :foo[t1], :bar[t2]*, :baz[t3] |)-> Integer
– addem::(Num t2) => (| :foo[t1], :bar[t2]*, :baz[t3] |)-> t2

New types

• Foo t1 t2 t3 = (| :foo[t1], :bar[t2]*, :baz[t3] |)
• Bar = Foo String Integer Bool

Weak Matching

• resolve ambiguity through weak matching:
– (| (:foo[], t1) | (t2, :bar[]) |)
– t2 could match :foo and t1 could match :bar
– weak matching, we exclude t2 from starting

with :foo and thereby resolve the ambiguity

Pattern Matching
• addem (|:foo[_], :bar[x@Integer]*, :baz[_]|) = fold (+) x
• addem (|:foo[_], :bar[x@Float]*, :baz[_]|) = fold (*) x
• addem (|:foo[_], :bar[x@Double]*, :baz[_]|) = fold (/) x

Current state

• Extended syntax (hacked Haskell grammar)
• Translation to “standard” Haskell (may require

some apparently obscure declarations)
• Subsumption checks are performed once (if “–

O”) at runtime and then resolve to True
• Pattern matching closer to Cduce than Xduce
• Marshal/Unmarshal between Haskell’s types

and regular types is possible as defined by user.

Implementation
• A newtype for every regular type either

– Defined by programmer, or
– Generated from a pattern in a match

• Each pattern also generates a tuple type
corresponding to the bound variables

• Also instance of class XMark providing info for
– Validation
– Casting to/from the type
– Pattern matching – pattern match returns Either tuple

error-message
• Finally, a structure containing all regex’s is

generated for validating and pattern matching.

Example regex type
regex Envelope =

(|:envelope[:headers[Header**]??,
:body[Any**]]|)

becomes
newtype Envelope = Envelope [Tree]
Instance XMark Envelope () where

-- “type” a hedge as an Envelope
create x = Envelope x
-- remove type so x can be cast to another type
decreate (Envelope x) = x
-- type name to be passed to validator
value x = “Envelope”

Pattern example
f (|:integers[int@Integer]**

:strings[str@String]**|) = ….

becomes
newtype Gensym0 = Gensym0 [Tree]
type Gensym1 = ([Integer], [String])
instance XMark Gensym0 Gensym1 where

… as above …
-- pattern variable names
varList x = [“int”, “str”]
-- convert results of pattern match to a Gensym1 tuple
toTuple _ (Right [int, str]) =

Just (create int, create str)
toTuple _ (Left errormessage) = error errormessage

Implementation, cont.
• Instances of Cast where trees must be cast from

one type to another
– given foo::Foo -> Bar and bar::Bar, (foo bar)

requires Bar <: Foo check
– given instance Cast Bar Foo,

• foo (cast bar) does the right thing
• One runtime check (if (Bar <: Foo) then …) becomes (if True

then …) if compiled with –O
• but these instances must currently be added

manually
– programmer changes (foo bar) to (foo (cast bar))

– compiler will list all the instances to be inserted.
– next step is to automate this

Implementation, cont.

• Serialize/Deserialize
– class Castor regtype algebraic section

• Given deserialize::section->algebraic then for any
regtype, given cast::regtype-> section there is
deserialize::regtype-> algebraic

– class Xmlable algebraic regtype

• Much of this is very similar to patterns in “Scrap
Your Boilerplate”
– in particular, our “cast” is a slight generalization of the

one in that paper.

Future Goals

• Compile time type checking inside GHC
– remove most run time checks and generated

code
• Default (de)serialization for algebraic types

with user override
• Parametric polymorphism and type

inference supporting infinite hedges

laziness and (non)determinism
Suppose we call a function with an infinite hedge:

f [([:int[x]]) | x <- [1..]]

Suppose we have patterns:
• f(|:int[a@Int]?,(:int[b@Int],:int[c@Int])*|)=…

no assignment until finished and will diverge while
matching

• f(|:int[a@Int]?|)= …
f(|(:int[b@Int],:int[c@Int])+|)=…
f(|:int[a@Int],(:int[b@Int],:int[c@Int])+|)=…

each deterministic, but cannot be distinguished in
bounded time, so it will diverge

• f(|(:int[b@Int],:int[c@Int])*,:int[a@Int]?|)=…
matches in bounded time, allows processing of b and c,
but accessing a will diverge

• Preference for the last alternative –
matching and assignment should happen
in bounded time, as in ordinary Haskell.

What’s a hedge?
• Hedge

([:foo[10 12 13] :bar[:foo[“abcde”, :bar[]]]]) =>
<foo>10 12 13</foo> <bar><foo>abcde</foo><bar/></bar>

• Regular expression type
regex Foo = (|:foo[Integer** | String], :bar[Foo??]|)

[namespace]:name for tag
“|” separates choice, “,” separates sequence, will add “&” for unordered

• Pattern (notice the variable bindings)
f(|:foo[(intList@Integer)** | astr@String], _|) =

(strval,intval)
where
strval= if ((length astr)>0)

then (head astr) else “”,
intval = foldl (+) 0 intList)

	Haxelladding regular types to Haskell
	
	Other Work
	Notation
	Type variables
	New types
	Weak Matching
	Pattern Matching
	Current state
	Implementation
	Example regex type
	Pattern example
	Implementation, cont.
	Implementation, cont.
	Future Goals
	laziness and (non)determinism
	
	What’s a hedge?

