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• Original goal – an Xduce style type system 
for a message passing language

• New goal – full regular type integration into 
Haskell
– Smooth integration of regular and algebraic 

types
– Support for infinite hedges



Other Work

• Similar to Cduce in pattern matching
– Does not support negative patterns

• Very similar to XHaskell except
– intend to integrate type checking into the 

compiler, rather than continue with generating 
types

– intend to support parametric polymorphism
– will require less type annotations

• the compiler “knows” which subsumption checks 
need to be made



Notation
• <foo>True</foo><bar>10</bar><bar>20</bar><

baz>“some text”</baz> 
• :foo[True] :bar[10] :bar[20] :baz[“some text”]
• Type:

– (| :foo[Bool], :bar[Integer]*, :baz[String] |)
– types nailed down quite specifically

• Change all the element names from foo to oof, 
bar to rab, and baz to zab:
– flipName:: (| :foo[Bool], :bar[Integer]*, :baz[String] |) -> 

(| :oof[Bool], :rab[Integer]*, :zab[String] |)
– even though contents of foo, bar, and baz are 

irrelevant 



Type variables

• Haskell type variables:
– (| :foo[t1], :bar[t2]*, :baz[t3] |)

• flipName:: (| :foo[t1], :bar[t2]*, :baz[t3] |) -> (| 
:oof[t1], :rab[t2]*, :zab[t3] |)

• Add elements:
– addem (|:foo[_], :bar[x]*, :baz[_]|) = fold (+) x

• Types:
– addem:: (| :foo[t1], :bar[t2]*, :baz[t3] |)-> Integer 
– addem::(Num t2) => (| :foo[t1], :bar[t2]*, :baz[t3] |)-> t2



New types

• Foo t1 t2 t3 = (| :foo[t1], :bar[t2]*, :baz[t3] |)
• Bar = Foo String Integer Bool



Weak Matching

• resolve ambiguity through weak matching:
– (| (:foo[], t1) | (t2, :bar[]) |)
– t2 could match :foo and t1 could match :bar
– weak matching, we exclude t2 from starting 

with :foo and thereby resolve the ambiguity



Pattern Matching
• addem (|:foo[_], :bar[x@Integer]*, :baz[_]|) = fold (+) x
• addem (|:foo[_], :bar[x@Float]*, :baz[_]|) = fold (*) x
• addem (|:foo[_], :bar[x@Double]*, :baz[_]|) = fold (/) x



Current state

• Extended syntax (hacked Haskell grammar)
• Translation to “standard” Haskell (may require 

some apparently obscure declarations)
• Subsumption checks are performed once (if “–

O”) at runtime and then resolve to True
• Pattern matching closer to Cduce than Xduce
• Marshal/Unmarshal between Haskell’s types 

and regular types is possible as defined by user.



Implementation
• A newtype for every regular type either

– Defined by programmer, or
– Generated from a pattern in a match

• Each pattern also generates a tuple type 
corresponding to the bound variables

• Also instance of class XMark providing info for
– Validation
– Casting to/from the type
– Pattern matching – pattern match returns Either tuple

error-message
• Finally, a structure containing all regex’s is 

generated for validating and pattern matching.



Example regex type
regex Envelope = 

(|:envelope[:headers[Header**]??,    
:body[Any**]]|)

becomes
newtype Envelope = Envelope [Tree]
Instance XMark Envelope () where

-- “type” a hedge as an Envelope
create x = Envelope x 
-- remove type so x can be cast to another type
decreate (Envelope x) = x
-- type name to be passed to validator
value x = “Envelope”



Pattern example
f (|:integers[int@Integer]**  

:strings[str@String]**|) = ….

becomes
newtype Gensym0 = Gensym0 [Tree]
type Gensym1 = ([Integer], [String])
instance XMark Gensym0 Gensym1 where

… as above …
-- pattern variable names
varList x = [“int”, “str”]
-- convert results of pattern match to a Gensym1 tuple
toTuple _ (Right [int, str]) = 

Just (create int, create str)
toTuple _ (Left errormessage) = error errormessage



Implementation, cont.
• Instances of Cast where trees must be cast from 

one type to another
– given foo::Foo -> Bar and bar::Bar, (foo bar)

requires Bar <: Foo check
– given instance Cast Bar Foo, 

• foo (cast bar) does the right thing 
• One runtime check (if (Bar <: Foo) then …) becomes (if True 

then …) if compiled with –O
• but these instances must currently be added 

manually
– programmer changes (foo bar) to (foo (cast bar))

– compiler will list all the instances to be inserted.
– next step is to automate this



Implementation, cont.

• Serialize/Deserialize
– class Castor regtype algebraic section

• Given deserialize::section->algebraic then for any 
regtype, given cast::regtype-> section there is 
deserialize::regtype-> algebraic

– class Xmlable algebraic regtype

• Much of this is very similar to patterns in “Scrap 
Your Boilerplate”
– in particular, our “cast” is a slight generalization of the 

one in that paper.



Future Goals

• Compile time type checking inside GHC
– remove most run time checks and generated 

code
• Default (de)serialization for algebraic types 

with user override
• Parametric polymorphism and type 

inference supporting infinite hedges 



laziness and (non)determinism
Suppose we call a function with an infinite hedge:  

f [([ :int[x] ]) | x <- [1..]]

Suppose we have patterns:
• f(|:int[a@Int]?,(:int[b@Int],:int[c@Int])*|)=…

no assignment until finished and will diverge while 
matching

• f(|:int[a@Int]?|)= …
f(|(:int[b@Int],:int[c@Int])+|)=…
f(|:int[a@Int],(:int[b@Int],:int[c@Int])+|)=…

each deterministic, but cannot be distinguished in 
bounded time, so it will diverge

• f(|(:int[b@Int],:int[c@Int])*,:int[a@Int]?|)=…
matches in bounded time, allows processing of b and c, 
but accessing a will diverge



• Preference for the last alternative –
matching and assignment should happen 
in bounded time, as in ordinary Haskell.



What’s a hedge?
• Hedge

([:foo[10 12 13] :bar[:foo[“abcde”, :bar[]]]]) =>
<foo>10 12 13</foo> <bar><foo>abcde</foo><bar/></bar>

• Regular expression type
regex Foo = (|:foo[Integer** | String], :bar[Foo??]|)

[namespace]:name for tag
“|” separates choice, “,” separates sequence, will add “&” for unordered

• Pattern (notice the variable bindings)
f(|:foo[(intList@Integer)** | astr@String], _|) = 

(strval,intval)
where 
strval= if ((length astr)>0) 

then (head astr) else “”,
intval = foldl (+) 0 intList)
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