
Why Applicative Functors MatterWhy Applicative Functors Matter

Derek Dreyer

Toyota Technological Institute at ChicagoToyota Technological Institute at Chicago

WG2.8 Meeting, Iceland

July 16-20, 2007

Matthias Felleisen Gets In a Good JabMatthias Felleisen Gets In a Good Jab

• Matthias Felleisen, POPL PC Chair report, Jan. 2007

– In a harangue about the navel-gazing nature of POPL

– Lists a variety of issues that people write POPL papers

about, which are obscure to the outside world

– The list includes “applicative vs. generative functors”

• I feel a twinge in my heart, for:

– This is what most of my papers are (at least

tangentially) about

– But Matthias has a point

Applicative vs. Generative FunctorsApplicative vs. Generative Functors

• Despite many papers on the ML module system,

– Few people (even in the POPL/FP community)

understand or care what the distinction is all about.

• Reasons for this:

– It’s not clear what the distinction is all about, from a

practical programming standpoint.

– Yes, applicative functors allow more programs to

typecheck, but their motivations are somewhat weak.

The Point of This TalkThe Point of This Talk

• Applicative functors DO matter!

– But not for the reasons usually given (Leroy, POPL’95)

• In this talk:• In this talk:

– An overview of traditional semantics and motivations

for applicative functors, and why I don’t buy them

– A new “killer app” for applicative functors

Why Generative Functors MatterWhy Generative Functors Matter

• Data encapsulation

• Need to tie abstract types to piece of mutable state that is

only created dynamically

– Canonical example: The SymbolTable functor

• Very similar motivation to ownership types in the OO world

• I won’t talk about them anymore today (until the very end)

Fully TransparentFully Transparent

HigherHigher--Order FunctorsOrder Functors

• Canonical example: The Apply functor

– signature SIG = sig type t … end

– functor Apply (F : SIG → SIG) (X : SIG) = F(X)

– Apply : (SIG → SIG) → (SIG → SIG)→ → →

• Problem:

– Apply(F) does not have the same signature as F.

– E.g. functor Id (X : SIG) = X

– Id : (X : SIG) → SIG where type t = X.t

– Apply(Id) : SIG → SIG

Applicative Functors to the RescueApplicative Functors to the Rescue

• Apply : (F : SIG → SIG) →

(X : SIG) → SIG where type t = F(X).t

• Apply (Id) : (X : SIG) → SIG where type t = Id(X).t

i.e. (X : SIG) → SIG where type t = X.t

Weak MotivationWeak Motivation

• Apply : (F : SIG → SIG) →

(X : SIG) → SIG where type t = F(X).t

• Apply (Id) : (X : SIG) → SIG where type t = Id(X).t

i.e. (X : SIG) → SIG where type t = X.t

• Great, but who cares about the Apply functor?

– It’s a very lame functor.

– Other, more exciting, examples have not been

forthcoming.

– At least that’s my impression, but maybe Xavier or

Norman would beg to differ?

esp. without signature polymorphism.

Identifying EquivalentIdentifying Equivalent

Functor InstantiationsFunctor Instantiations

• Canonical example: The MkSet functor

– signature ORD = sig type t; val cmp : t → t → bool end

– signature SET = sig type t; type elem;

val empty : t;val empty : t;

val insert : elem → t → t …

end

– functor MkSet (X : ORD)

:> SET where type elem = X.t

= struct ... end

Identifying EquivalentIdentifying Equivalent

Functor InstantiationsFunctor Instantiations

• Canonical example: The MkSet functor

– structure OrdInt = struct type t = int; val cmp = …end

– structure IntSet1 = MkSet(OrdInt)

– structure IntSet2 = MkSet(OrdInt)– structure IntSet2 = MkSet(OrdInt)

– In SML, IntSet1.t ≠ IntSet2.t, but they are in fact

compatible types.

– In OCaml, IntSet1.t = MkSet(OrdInt).t = IntSet2.t.

Identifying EquivalentIdentifying Equivalent

Functor InstantiationsFunctor Instantiations

• My assessment:

– OCaml’s behavior (on this example) is appealing.

– But doesn’t seem critically important.

• Moreover, we run into the module equivalence problem:

– What is the right way to compare M and N when

checking whether F(M).t = F(N).t?

The Module Equivalence ProblemThe Module Equivalence Problem

• In OCaml, equivalence of types of the form F(X).t is

purely syntactic. Example:

– structure IntSet = MkSet(OrdInt)

– structure MyOrdInt = OrdInt

– structure MyIntSet = MkSet(MyOrdInt)

– MyIntSet.t ≠ IntSet.t because

MkSet(MyOrdInt).t ≠MkSet(OrdInt).t syntactically.

• This makes applicative functor semantics very brittle.

The Module Equivalence ProblemThe Module Equivalence Problem

• Subsequent papers on the ML module system attempted to

address this by instead comparing functor arguments via

“static equivalence” (Shao 99, Russo 00, Dreyer et al. 03)

– Two modules are statically equivalent if their type

components are equal.components are equal.

– This equates MyOrdInt and OrdInt,

and thus MyIntSet.t and IntSet.t, as we desired.

– But it also equates too many other things:

• OrdIntLt = OrdIntGt, statically

• MkSet(OrdIntLt).t ≠MkSet(OrdIntGt).t, in principle

The Module Equivalence ProblemThe Module Equivalence Problem

• Really what we want is contextual equivalence.

– MkSet(OrdInt).t = MkSet(OrdInt).t, obviously

– MkSet(OrdInt).t = MkSet(MyOrdInt).t,

since MyOrdInt is just a copy of OrdInt

≠– MkSet(OrdIntLt).t ≠MkSet(OrdIntGt).t,

since OrdIntLt ≠ OrdIntGt (contextually)

• However, contextual equivalence is undecidable.

– I’ll return to this issue toward the end of the talk.

SummarySummary

• Given just Xavier’s original motivations, I don’t think

applicative functors are worth it.

• One motivation Xavier did not present, but that I used to

find very compelling, is recursive modules.find very compelling, is recursive modules.

– Encoding data structures such as “bootstrapped heaps”

seems to require applicative functors.

– But my work on “recursive type generativity”

(ICFP ’05, ’07) shows how to support such data

structures just fine with generative functors.

Modular Type ClassesModular Type Classes

• POPL ’07: Joint work with Harper and Chakravarty

• Basic idea: Model Haskell type classes using modules

– Classes are signatures– Classes are signatures

– Instances are structures

– Generic instances are functors

– Instances do not have global scope, they may be

adopted as “canonical” within a local scope

Classes and Instances in MLClasses and Instances in ML

• Great, but now how do we create the eq function?

In Haskell, the class declaration of Eq automatically creates an overloaded eq with global scopeIn ML, the signature definition of EQ has no such effect

Creating an Overloaded FunctionCreating an Overloaded Function

• We employ an overload mechanism:

• This creates a “polymorphic value” eq, represented • This creates a “polymorphic value” eq, represented

internally (in the semantics) as an implicit functor:

• Analogous to Haskell’s qualified types:

Making an Instance CanonicalMaking an Instance Canonical

• Designate EqInt and EqProd as canonical in a certain scope:

Making an Instance CanonicalMaking an Instance Canonical

• Now if we apply eq in that scope:

• Then the above code typechecks and translates internally to:

• Similar to evidence translation in Haskell:

– Here we use modules as evidence

Restrictions on Instance FunctorsRestrictions on Instance Functors

• Instance functor bodies must be pure and terminating.

– Important to ensure that references to variables (like eq)

do not engender arbitrary effects.

• Instance functors must be transparent. Why?

– For simplicity, we only supported generative functors.

– So if a generative functor is not transparent, every

application has the effect of creating new abstract types.

– So a whole class of functors, like MkSet, can’t be used

as instance functors.

My ClaimsMy Claims

• Applicative functors can increase the expressiveness of

modular type classes, bringing them closer to Haskell in a

clean and elegant way.

• Making the same purity restriction on applicative functors • Making the same purity restriction on applicative functors

that we make on instance functors will give us

“true” applicative functors, which is what we want anyway.

The existing purity restriction…because true applicative functors are semantically better behaved than traditional applicative functors.

Motivating ExampleMotivating Example

• Here is a function singleton, that takes an argument x

and returns the singleton set {x}.

I know that Set libraries typically provide this singleton function anyway, but it’s a conveniently small example that will suffice to illustrate my main points.

Motivating ExampleMotivating Example

• But applying this singleton function

does not actually per se create a set. It just elaborates todoes not actually per se create a set. It just elaborates to

where X is bound by a residual constraint

Motivating ExampleMotivating Example

• If all we have are generative functors, then we have to

define the Set module for each type individually.

• This is quite cumbersome. Aren’t modular type classes

supposed to apply your functors for you?

And it gets more cumbersome if you have to want to define sets for a compound type, like a pair type. You have to do this whole thing for each type of set.

Applicative Functors to the RescueApplicative Functors to the Rescue

• If MkSet is applicative, then it can be given a transparent

signature:

• So we can use it as an instance functor:

Applicative Functors to the RescueApplicative Functors to the Rescue

• Or, better yet:

• This is an improvement, but may not be quite what we want.

In particular, suppose we want to be able to write a singleton function that only operates on sets of a set type corresponding to the MkSet functor. Doing this by first defining a generic singleton function that works over any type that’s an instance of the set class, and then adding MkSet as an instance functor and then coercing the type of the singleton function to this more specialized type is not very direct.

Module OverloadingModule Overloading

• We really would like to project directly from MkSet itself:

• The type of mysingleton may now be inferred.

• The idea is very natural:

– Just as eq is a functor representing an overloaded term,

MkSet is a functor representing an overloaded structure.

Note this is not something you can do with modular type classes, this is a new feature that I’m proposing.

Semantics of Module OverloadingSemantics of Module Overloading

• Treat projection from a functor as a composition of

projection and the functor:

λ• “MkSet.insert” = λ (X : ORD). MkSet(X).insert

• “MkSet.t” = λ (X : ORD). MkSet(X).t

• For MkSet.t, argument cannot be inferred

• Projection and application of a functor commute:

Can apply these functors explicitly, or in the case of MkSet.insert we can have its argument computed implicitly as part of polymorphic instantiation.

No Need for No Need for overloadoverload

• No more need for the overload mechanism

• Overloading is just projection from the identity functor:

– functor EQ (X : EQ) = X

– “EQ.eq” is the overloaded “eq” operator (i.e. functor)– “EQ.eq” is the overloaded “eq” operator (i.e. functor)

– “open EQ” introduces “eq” into scope directly

Type OperatorsType Operators

• MkSet.t is a functor mapping an ORD module to a type.

• We have MkSet.t(OrdIntLt) ≠MkSet.t(OrdIntGt).

• But say OrdInt has been “used” as the canonical

implementation of ORD at int. Then, we’d like to write

MkSet.t(int) and have that mean MkSet.t(OrdInt).MkSet.t(int) and have that mean MkSet.t(OrdInt).

• Solution:

– Set = λ(α). λ(X : ORD where type t = α). MkSet(X)

– Set.t(int) elaborates to

Set.t(int)(OrdInt) when used in a type expression

in the scope of “using OrdInt”.

Another ExampleAnother Example

• Assume Set functor has fromList and toList functions,

val crossList : α list → β list → (α × β) list

• fun crossSet S1 S2 =

Set.fromList (crossList (Set.toList S1) (Set.toList S2))Set.fromList (crossList (Set.toList S1) (Set.toList S2))

• val crossSet :

(X:ORD, Y: ORD) ⇒

MkSet(X).t →MkSet(Y).t →MkSet(OrdProd(X)(Y)).t

Another ExampleAnother Example

• Assume Set functor has fromList and toList functions,

val crossList : α list → β list → (α × β) list

• fun crossSet S1 S2 =

Set.fromList (crossList (Set.toList S1) (Set.toList S2))Set.fromList (crossList (Set.toList S1) (Set.toList S2))

• val crossSet :

(X:ORD, Y: ORD) ⇒

Set.t (X.t) → Set.t (Y.t) → Set.t (X.t × Y.t)

Conclusion #1Conclusion #1

Modular type classes

==

“Killer app” for applicative functors

Contextual Module EquivalenceContextual Module Equivalence

• One of the original problems with applicative functors:

– Want to compare functor args via contextual equivalence

• A conservative form of contextual module equivalence can • A conservative form of contextual module equivalence can

be implemented via static equivalence:

– At every value binding, define a hidden ADT “rep”

– If two values have the same hidden “rep” type,

then one must be a copy of the other

– So static equivalence ⇒ contextual equivalence

Contextual Module EquivalenceContextual Module Equivalence

• This trick DOES NOT work if applicative functors can

have impure bodies. Example:

– F = λ (). struct val x = ref 3 end

– A = F(), B = F()

≠– A.x.rep = B.x.rep, but A.x.val ≠ B.x.val

• More generally, this trick only works if:

– X = Y ⇒ F(X) = F(Y)

– I.e. F is a “true” applicative functor

Conclusion #2Conclusion #2

“True” applicative functors

==

The way to go

Questions for the CrowdQuestions for the Crowd

• Are there any good uses of impure applicative functors?

– I think so, but they are not very compelling.

• Are there any good uses of pure generative functors?• Are there any good uses of pure generative functors?

– I don’t think so.

• My current thinking:

– Applicative/Generative = Pure/Impure, plain and simple.

Thank you!Thank you!

