
university-logo

Generic sorting Complexity Conclusion

Generic Sorting Multiset Discriminators
How to sort complex data in linear time

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Outline

1 Generic sorting

2 Complexity

3 Conclusion

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Outline

1 Generic sorting

2 Complexity

3 Conclusion

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Outline

1 Generic sorting

2 Complexity

3 Conclusion

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Standard recipe

1 For each (first-order) type T , define a standard order by
induction on type denotation T . Denote standard order by
term r or think of T itself as a denotation of the order.

2 Define a generic comparison function/inequality test
(characteristic function of order) compositionally on
standard order/type denotation.

3 Choose a good comparison-based sorting algorithm, say
randomized Quicksort.

4 Define generic sorting function by applying sorting
algorithm to generically defined comparison function.

5 Result: a function that takes a standard order denotation
as (possibly implicit) input and returns a sorting function for
that standard order.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Standard recipe: Observations

It is the comparison function that is generically defined.

The sorting algorithm is not generically defined: it is
parametricin the comparison functions.

Since definition of comparison function is compositional,
standard order denotations need not be explicit. They can
be given providing record of combinators instead.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Generic sorting with type classes

1 Define type class (Ord t). Designate name of function to be
defined generically (compare).

2 Provide instance declarations, which are individual clauses
of the compositional definition.

3 Ask compiler to extend to recursively defined functions
over recursively defined types by employing “deriving”
construct.

4 Then define sorting function parametrically from
generically defined comparison function:

sort :: (Ord t) => [t] -> [t]

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Questions

1 Do we only ever want at most one order per type? What
about sorting pairs in ascending order on first component
and descending order on second components? On first
components only (and with higher-order values in second
component)? On the first four letters of the elements only?

2 Do we need or want explicit denotations instead of
providing a record of the composition functions only?

3 How to deal with recursively defined types?
4 Why define the comparison function generically and then

use comparison-based sorting, which only provides access
to the comparison function of a type instead of defining
sorting generically directly?

5 Can you sort generically in linear time?

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Orders

Definition (Total preorder)

A total preorder (order) (T ,≤) is a type T together with a binary
relation ≤⊆ T × T that is reflexive, transitive and total.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Order denotations

See order.hs

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Generic definition of comparison function

See inequality.hs

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Generic definition of sorting function

We can try to define sorting functions directly generically:

dsort :: Order k -> [k] -> [k]

Imagine now we want to define the case for Pair r1 r2:

sort (Pair r1 r2) xs = ... sort r1 ... sort
r2 ...

How to do this?
Equivalently, how can we define a combinator for sorting pairs
given only sorting functions for the first and second
components, respectively?

sortPair :: ([t1]->[t1) -> ([t2]->[t2]) ->
[(t1, t2)] -> [(t1, t2)]

sortPair s1 s2 xs = ... s1 ... s2 ...

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Generic definition sorting

We can sort the individual components by themselves using s1
or s2, but this does not help us much since we will then need to
reassociate the sorted component values with their associated
other component values.
Conclusion: We should generalize the type of sort to sort
elements according to a part of the elements. Call this part the
key of the element and the remaining part its associated value
and the whole element the record to be sorted. (Indeed this is
the original formulation of the sorting problem.)

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Dicriminative sorting

See sort.hs

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Discriminative sorting: Observation 1

Each part of a key, once used for sorting is returned as
part of the output, but never used (inspected/destructed)
again as part of the sorting algorithm.

Keys that are sorted on often need to be discarded from
the output in the recursive calls.

Idea 1: Return only values, not keys, as part of output.
Amounts to “sorting the value according to the keys”.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Discriminative sorting: Observation 2

Sorting of pairs is right-to-left: Sort records according to
right component first. Then sort result according to left
component.

Requires a stable sorting function to be correct.
Consider when used to sort list-elements: Inspects all parts
of (almost) all keys, not just minimal distinguishing prefix.

Left-to-right sorting requires knowing which elements are
equivalent according to left component.

Idea 2: Return equivalence classes, not just individual
elements, in sorted order.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Order-preserving discrimination

See disc.hs

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Discriminator combinators

See disccomb.hs

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Explicit denotations versus combinators

Same for both:

There may be any number (0, 1 or more) of denotable
orders at a given type.

Any which order may be denoted by multiple denotations
(combinator expressions); e.g. Inv (Sum r1 r2) and
sum2 (Inv r1) (Inv r2) .

Since algorithms are defined by induction on denotations,
different denotations (combinator expressions) give
different algorithms.

Denotations (combinator expressions) can be used to
“control” which algorithm is generated.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Explicit denotations versus combinators

Differences:

Transformations of denotations to semantically equivalent
denotations may be used to optimize algorithms:

optimize :: Order(t) -> Order(t) optimize
Char = Char ...

fdisc r xs = disc (optimize r) xs

This requires reasoning about terms of type Order(k)
(explicit denotations) versus [(k, v)] -> [[v]] . Since
Order has an elimination form (definition by cases), the
former is programmable in the object language, the latter
not.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Applications

See discapps.hs

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Classical sorting algorithms

Quicksort
Mergesort
Heapsort
Insertion sort
Bubble sort
Bitonic sort
Shell sort
Zero-one mergesort
AKS sorting network
Bucket sort
Radix/lexicographic sort
. . .

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Myths and facts

Everybody knows: Sorting requires O(n log n). O(n log n)
what? And does it really require that? Facts:

1 Given abstract total preorder (order) (T ,≤), any sorting
algorithm requires Ω(m log m) applications of the
comparison operator ≤ to sort an input of m elements of
type T .

2 There exist algorithms that, given any (T ,≤), sort m inputs
using O(m log m) applications of the comparison operator.

3 Fact 1 does not imply that sorting requires Ω(n log n) time
where n is the size of the input. O(n) sorting algorithms for
a large number of concrete orders exist (remainder of talk).

4 Fact 2 does not imply that those algorithms necessarily
execute in worst-case time O(n log n) for non-constant size
input elements. None of them do.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Time complexities reconsidered

Assume (T ,≤) such that time complexity of executing x ≤ y is
Θ(|x |+ |y |). Input: [x1, . . . , xm] of size n = Σn

i=1|xi |.
Quicksort: Θ(n2) (O(n log n) randomized?!)
Mergesort: Θ(n2)
Heapsort: Θ(n2)
Selection sort: Θ(n3)
Insertion sort: Θ(n2)
Bubble sort: Θ(n2)
Bitonic sort: Θ(n log2 n)
Shell sort: Θ(n log2 n)
Zero-one mergesort: Θ(n log2 n)
AKS sorting network: O(n log n) (uniformly constructible?)
Bucket/counting sort: not comparison-based
Radix/lexicographic sort: not comparison-based

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Time complexities reconsidered

Proof ideas:

1 Consider one element of size Θ(n), the rest of size O(1).
How many comparisons performed on that one element?

2 Algorithm as sorting network: Maximum depth is upper
bound on number of comparisons on each element.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Complexity of discrimination

Theorem (Top-down MSD)

For each canonical r: Order(t) the discriminator disc r
executes in worst-case linear time on it (unboxed size) input.

Canonical r: Standard order denotation, canoncially.
Theorem also holds under Bag and Set equivalences.
Linearity for top-down MSD only holds for unshared (unboxed)
data (sequences, not lists with shared tails; trees, not dags).
Linear time performance can be achieved for shared, acyclic
data using bottom-up MSD.
O(n log n) performance can be achieved for shared, cyclic data
(using different algorithmic strategy).

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Performance

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Performance

No algorithm engineering in the code!

Need to understand not only Haskell, but compiler to figure
out practical performance.

Quite competitive vis a vis Quicksort in terms of time;
sometimes much better, e.g. small distinguishing prefix in
input.

Distributive sorting is known to be problematic in terms of
space consumption vis a vis comparison-based sorting
algorithms.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

university-logo

Generic sorting Complexity Conclusion

Conclusion and perspectives

Generic discrimination: Solves paritioning and sorting in
one go in linear time.

With a linear-time discriminator as primitive function for
observing equality at an abstract type partitioning can be
solved in linear time as opposed to quadratic time, when
only given an equality test.

GADTs, System F (rank 2) types and list comprehensions
have been pleasant for specifying discrimination.

Fritz Henglein DIKU, University of Copenhagen

Sorting Multiset Discrimination

	Generic sorting
	Complexity
	Conclusion

