
© 2007 Galois, Inc.

Haskell Program CoverageHaskell Program Coverage
ToolkitToolkit
Andy Gill
Colin Runciman

© 2007 Galois, Inc.

Haskell as an Implementation LanguageHaskell as an Implementation Language

How do you debug and test Haskell programs?
• The program compiles!

– Type checking does catch many, many errors, but clearly not all
• Run program over a handful of inputs, examine output

– Incremental testing; other features can break
• Write unit tests

– In Haskell, we can use a specification style for function level unit tests

prop_goodSort1 xs = isSorted (sort xs) == True
prop_goodSort2 xs = length xs == length (sort xs)
prop_goodSort3 xs = all [x `isMember` sort xs | x <- xs]
…

• How much testing is enough?
• What assessments about test quality can we make automatically?

We are going to use code coverage to help make assessments…

© 2007 Galois, Inc.

Why Study Code Coverage?Why Study Code Coverage?

If your program contains reachable code that has not been
executed by your tests, then your program is insufficiently
tested. This reachable, unexecuted code could do anything.

Source CodeSource Code

UnusedUnused
LibraryLibrary
CodeCode

 ExecutedExecuted
ByBy

TestsTests

Untested CodeUntested Code

ReachableReachable
CodeCode

© 2007 Galois, Inc.

if (x == 4) {
 y = 5;
}

Principal Classes ofPrincipal Classes of Code CoverageCode Coverage

• Function Based Coverage
– List of functions (or classes) that are never executed
– Coarse grain functionality

• Decision Coverage
– What branches have been taken?
– What boolean expressions inside control structures were always true or

always false?

• Line (or Statement) Coverage
– What lines have never been executed?
– Typically displayed as color listings

• Path Coverage
– Capturing combinations of assignments and control flow

© 2007 Galois, Inc.

Case,
Pattern Matching

Switch

(Sub) ExpressionsYes*Path

?YesLine

Conditionals,
Guards,
Qualifiers

ConditionalsDecision

YesYesFunction

Haskell
Code Coverage

Traditional
Code Coverage

Coverage
Class

Mapping Traditional Code CoverageMapping Traditional Code Coverage
to Haskell Code Coverageto Haskell Code Coverage

* Only found in high-end coverage tools

© 2007 Galois, Inc.

Classes ofClasses of Haskell Code CoverageHaskell Code Coverage

• Function Based Coverage
– List of functions that are never evaluated
– Course grain functionality

• Alternative Coverage
– How many alternatives were never evaluated?

• Control Boolean Coverage
– What boolean expressions inside control structures were always

true or always false?

• Expression Level coverage
– What expression has never been evaluated?
– Critical for complete coverage of non-strict language
– Comparable to path coverage in traditional coverage tools

© 2007 Galois, Inc.

ExampleExample Haskell ProgramHaskell Program

© 2007 Galois, Inc.

Reciprocal Program ExecutingReciprocal Program Executing

$ reciprocal
2
1/2 = 0.5
3
1/3 = 0.(3)
4
1/4 = 0.25

© 2007 Galois, Inc.

Example Markup fromExample Markup from Haskell Coverage ToolHaskell Coverage Tool

© 2007 Galois, Inc.

Example Output from Textual ReportExample Output from Textual Report

$ hpc-report a.out
-----<module Main>-----
 90% expressions used (88/97)
 37% boolean coverage (3/8)
 28% guards (2/7),

3 always True, 2 unevaluated
 100% 'if' conditions (1/1)
 100% qualifiers (0/0)
 77% alternatives used (7/9)
100% local declarations used (1/1)
100% top-level declarations used (5/5)

© 2007 Galois, Inc.

Reciprocal program executing new casesReciprocal program executing new cases

$ reciprocal
1
reciprocal: attempting to compute

reciprocal of number <= 1
$ reciprocal
33
1/33 = 0.(03)

© 2007 Galois, Inc.

Example of 100% CoverageExample of 100% Coverage

© 2007 Galois, Inc.

Instrumented codeInstrumented code

• Ticks are added to each “interesting” sub-expression

f 99 (g n) --> tick 1 (f (tick 2 99) (tick 3 (g (tick 4 n))))

• Ticks
– are numbered
– are omitted on obviously strict sub-expression
– work by benign side-effect

© 2007 Galois, Inc.

The Haskell Program Coverage ToolkitThe Haskell Program Coverage Toolkit

• Hpc consists of
– Compiler option inside the Glasgow Haskell compiler
– Command line tools for processing coverage data

• Hpc can output code and summary tables for viewing in any browser
– Intermediate formats are simple and open
– Other tools can use the coverage data

• Scales to large Haskell programs
– Handles Haskell programs with 100s of modules and 100k+ lines of code
– Can interoperate with pre-compiled libraries
– Runtime overhead of around 2

• We are now going to quickly survey three Hpc features that go
beyond simple code markup
– Dashboard of coverage
– DSL for coverage exclusions
– Dynamic Code Coverage

© 2007 Galois, Inc.

Haskell Program CoverageHaskell Program Coverage DashboardDashboard

© 2007 Galois, Inc.

Why isWhy is code not executed?code not executed?

• Dead Code (unreachable from main)
– If in a core module, should be removed
– If in a library, not using a specific function is completely reasonable

• Asserts, Preconditions and Impossible cases
– Asserts catch cases that we consider impossible to ever happen

(inconsistent data, bad precondition, etc)
– Should be impossible to reach this code!

• Token values
– () : the empty tuple is a type of token we use in Haskell

• Code specifically for testing code not executed in a system
binary
– A type of dead code
– Perhaps reachable through BIST

© 2007 Galois, Inc.

Hpc Hpc includes aincludes a script for specifyingscript for specifying exclusionsexclusions

tick every expression "()" [idiom];

module "Parse" {
 tick function "test_number" [testing];
 function "rayParse" {
 tick expression “\“error (show err)\”” [impossible];
 }
}
…

We call these a coverage overlays
• They overlay coverage found via execution with information about

reasonable gaps in coverage found by inspection.

© 2007 Galois, Inc.

Methodology for Reaching 100% CoverageMethodology for Reaching 100% Coverage

Two directions of coverage improvement
• Add new tests
• Add exclusions to overlay

CoveredCovered
DuringDuring
TestingTesting

ExclusionsExclusions

NotNot
CoveredCovered

New New TestsTests

100%100%

CapturedCaptured
ExclusionsExclusions

The captured exclusions
specify what a human
reviewer has considered
reasonable never to reach

Hpc also includes a tool
which automatically
generates a first draft of
this list of exclusions

© 2007 Galois, Inc.

Dynamic Code CoverageDynamic Code Coverage

Simple Idea - Give the programmer the ability to read and write to the
current state of the code coverage counters - at runtime.

• When testing (using QuickCheck) we can separate coverage into
successful and unsuccessful coverage buckets, in a single run.
– Prototyped inside QuickCheck2
– Taking the difference between successful and unsuccessful coverage

automatically finds the code uniquely executed by unsuccessful
QuickCheck properties.

– Automated “heads-up” for finding bugs.

• We can observe coverage in a running program over a single external
event or transaction
– For example what code do we use to handle serving a web page?

• … and many others …

© 2007 Galois, Inc.

SummarySummary
• Haskell has high-fidelity coverage information tools

– Human overhead is nominal (add a single compiler flag)
• Toolkit gives state-of-the-art coverage information

– Covered code is marked up in HTML with dashboard to help navigation
– Coverage can combine multiple binaries that share code
– Includes scripting language for specifying exceptions

• Hpc is useful to Galois and the wider Haskell community
– Possible to demonstrate coverage on real code
– Found bugs in existing code (typically missing preconditions)
– There are grass root plans to use Hpc on core Haskell libraries before next

GHC release cycle
• Technology reusable for other Haskell projects

– Hpc adressed the problem of mapping source locations to locations inside
an executable binary - the new Haskell debugger uses the Hpc solution to
allow expression-level debugging

– There is a dynamic tracer based on coverage ordering, also with accurate
source locations available

– Plans for profile based optimizations and profile based deforestation

