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Background: FRP and Yampa
z Functional Reactive Programming (FRP) is based on two 

simple ideas:
{Continuous time-varying values, and
{Discrete streams of events.

z Yampa is an “arrowized” version of FRP.
z Besides foundational issues, we (and others) have 

applied FRP and Yampa to:
{ Animation and video games.
{ Robotics and other control applications.
{ Graphical user interfaces.
{Models of biological cell development.
{Music and signal processing.
{ Scripting parallel processes.



Behaviors in FRP

z Continuous behaviors capture any time-varying 
quantity, whether:
{input (sonar, temperature, video, etc.),
{output (actuator voltage, velocity vector, etc.), or
{intermediate values internal to a program.

zOperations on behaviors include:
{Generic operations such as arithmetic, integration, 

differentiation, and time-transformation.
{Domain-specific operations such as edge-detection 

and filtering for vision, scaling and rotation for 
animation and graphics, etc.



Events in FRP

z Discrete event streams include user input as well as 
domain-specific sensors, asynchronous messages, 
interrupts, etc.

z They also include tests for dynamic constraints on 
behaviors (temperature too high, level too low, etc.)

z Operations on event streams include:
{Mapping, filtering, reduction, etc.
{Reactive behavior modification (next slide).



An Example from Graphics (Fran)

A single animation example that demonstrates 
key aspects of FRP:

growFlower =  stretch size flower
where  size = 1 + integral bSign

bSign =
0 `until`
(lbp ==> -1 `until` lbr ==> bSign) .|.
(rbp ==>  1 `until` rbr ==> bSign)
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An Example from Robotics

z The equations governing the x position of a differential 
drive robot are:

z The corresponding FRP code is:
x = (1/2) * (integral ((vr + vl) * cos theta)

theta = (1/l) * (integral (vr - vl))

(Note the lack of explicit time.)



Time and Space Leaks

z Behaviors in FRP are what we now call signals, whose 
(abstract) type is:

Signal a = Time -> a

z Unfortunately, unrestricted access to signals makes it far 
too easy to generate both time and space leaks.

z (Time leaks occur in real-time systems when a 
computation does not “keep up” with the current time, 
thus requiring “catching up” at a later time.)

z Fran, Frob, and FRP all suffered from this problem to 
some degree.



Solution: no signals!

z To minimize time and space leaks, do not provide 
signals as first-class values.

z Instead, provide signal transformers, or what we prefer 
to call signal functions:

SF a b = Signal a -> Signal b

z SF is an abstract type. Operations on it provide a 
disciplined way to compose signals.

z This also provides a more modular design.
z SF is an arrow – so we use arrow combinators to 

structure the composition of signal functions, and 
domain-specific operations for standard FRP concepts.



A Larger Example

z Recall this FRP definition:
x = (1/2) (integral ((vr + vl) * cos theta))

z Assume that:
vrSF, vlSF :: SF SimbotInput Speed
theta      :: SF SimbotInput Angle

then we can rewrite x in Yampa like this:
xSF :: SF SimbotInput Distance
xSF = let v = (vrSF&&&vlSF) >>> arr2 (+)

t = thetaSF >>> arr cos
in (v&&&t) >>> arr2 (*) >>> integral >>> arr (/2)

z Yikes!!!  Is this as clear as the original code??



Arrow Syntax
z Using Paterson’s arrow syntax, we can instead write:

xSF' :: SF SimbotInput Distance
xSF' = proc inp -> do

vr <- vrSF -< inp
vl <- vlSF -< inp
theta <- thetaSF -< inp
i     <- integral -< (vr+vl) * cos theta
returnA -< (i/2)

z Feel better?  ☺
z Note that vr, vl, theta, and i are signal samples, and 

not the signals themselves.  Similarly, expressions to 
the right of “-<” denote signal samples.

z Read “proc inp -> …” as “\ inp -> …” in Haskell.
Read “vr <- vrSF -< inp” as “vr = vrSF inp” in Haskell.



Graphical Depiction
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xSF' :: SF SimbotInput Distance
xSF' = proc inp -> do

vr <- vrSF -< inp
vl <- vlSF -< inp
theta <- thetaSF -< inp
i  <- integral  -<  (vr+vl) * cos theta
returnA -< (i/2)

xSF = let v = (vrSF &&& vlSF) >>> arr2 (+)
t = thetaSF >>> arr cos

in (v &&& t) >>> arr2 (*) >>> integral >>> arr (/2)
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A Recursive Mystery

z Our use of arrows was motivated by performance and 
modularity.

z But the improvement in performance seemed better than 
expected, and happened for FRP programs that looked 
Ok to us.

z Many of the problems seemed to occur with recursive
signals, and had nothing to do with signals not being 
abstract enough.

z Further investigation of recursive signals is what the rest 
of this talk is about.

z We will see that arrows do indeed improve performance, 
but not just for the reasons that we first imagined!



Representing Signals
z Conceptually, signals are represented by:

Signal a  ≈ Time -> a

z Pragmatically, this will not do: stateful signals could 
require re-computation at every time-step.

z Two possible alternatives:
{ Stream-based implementation:

newtype S a = S ([DTime] -> [a])

(similar to that used in SOE and original FRP)
{ Continuation-based implementation:

newtype C a = C (a, DTime -> C a)

(similar to that used in later FRP and Yampa)

(DTime is the domain of time intervals, or “delta times”.)



Integration: A Stateful Computation

z For convenience, we include an initialization argument:
integral :: a -> Signal a -> Signal a

z Concrete definitions:
integralS :: Double -> S Double -> S Double
integralS i (S f) = 

S (\dts -> scanl (+) i (zipWith (*) dts (f dts))

integralC :: Double -> C Double -> C Double
integralC i (C p) =

C (i, \dt -> integralC (i + fst p * dt) (snd p dt))



“Running” a Signal

z Need a function to produce results:
run :: Signal a -> [a]

z For simplicity, we fix the delta time dt -- but this is not 
true in practice!

z Concretely:
runS :: S a ->[a]
runS (S f) = f (repeat dt)

runC :: C a -> [a]
runC (C p) = first p : runC (snd p dt)

dt = 0.001

z So far so good…



Example: The Exponential Function

z Consider this definition:

z Or, in our Haskell framework:
eS :: S Double

eS = integralS 1 eS

eC :: C Double
eC = integralC 1 eC

z Looks good… but is it really?
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Space/ Time Leak!
z Let int = integralC, run = runC, and recall:

int i (C p) = C (i, \dt-> int (i+fst p*dt) (snd p dt))
run (C p)   = first p : run (snd p dt)

z Then we can unwind eC:
eC = int 1 eC

= C (1, \dt-> int (1+fst p*dt) (snd p dt) )
p

= C (1, \dt-> int (1+1*dt) (· dt) )
q

run eC
= run (C (1,q))
= 1 : run (q dt)
= 1 : run (int (1+dt) (q dt))
= 1 : run (C (1+dt, \dt-> int (1+dt*(1+dt)*dt) (· dt)))
= ...

z This leads to O(n) space and O(n2) time to compute n 
elements!  (Instead of O(1) and O(n).)



Streams are no better

z Recall:
int i (S f) = 

S (\dts -> scanl (+) i (zipWith (*) dts (f dts))

z Therefore:
eS = int 1 eS

= S (\dts -> scanl (+) 1 (zipWith (*) dts (· dts))

z This leads to the same O(n2) behavior as before.



Signal Functions
z Instead of signals, suppose we focus on signal functions.  

Conceptually:
SigFun a b = Signal a -> Signal b

z Concretely using continuations:
newtype CF a b = CF (a -> (b, DTime -> CF a b))

z Integration over CF:
integralCF :: Double -> CF Double Double
integralCF i = CF (\x-> (i,\dt-> integralCF (i+dt*x)))

z Composition over CF:
(^.) :: CF b c -> CF a b -> CF a c
CF f2 ^. CF f1 = CF (\a -> let (b,g1) = f1 a

(c,g2) = f2 b
in (c, \dt -> comp (g2 dt) (g1 dt)))

z Running a CF:
runCF :: CF () Double -> [Double]
runCF (CF f) = let (i,g) = f ()

in i : runCF (g dt)



Look Ma, No Leaks!

z This program still leaks:
eCF = integralCF 1 ^. eCF

z But suppose we define:
fixCF :: CF a a -> CF () a

fixCF (CF f) = 
CF (\() -> let (y, c) = f y

in  (y, \dt -> fixCF (c dt)))

z Then this program:
eCF = fixCF (integralCF 1)

does not leak!!  It runs in constant space and linear time.
z To see why…



z Recall:
int i = CF (\x -> (i, \dt -> int (i+dt*x)))
fix (CF f) = CF (\() -> let (y, c) = f y

in  (y, \dt -> fix (c dt)))
run (CF f) = let (i,g) = f () in i : run (g dt)

z Unwinding eCF:
fix (int 1)
= fix (CF (\x-> (1, \dt-> int (1+dt*x))))
= CF (\()-> let (y,c) = (1, \dt-> int (1+dt*y))

in (y, \dt-> fix (c dt)))
= CF (\()-> (1, \dt-> fix (int (1+dt))))

run (·)
= let (i,g) = (1, \dt-> fix (int (1+dt)))

in i : run (g dt)
= 1 : run (fix (int (1+dt*y)))

z In short, fixCF creates a “tighter” loop than Haskell’s fix.



Mystery Solved

z Casting all this into the arrow framework reveals why 
Yampa is better behaved than FRP. In particular:
instance ArrowLoop CF where

loop :: CF (b,d) (c,d) -> CF b c
loop (CF f)  = CF (\x -> let ((y,z), f') = f (x,z)

in (y, loop . f'))
e = proc () -> do rec

e <- integral 1 -< e
returnA -< e

z Compare loop to:
fixCF :: CF a a -> CF () a

fixCF (CF f) = CF (\()-> let (y, f’) = f y
in  (y, fixCF . f’))



Alternative Solution
z Recall this unwinding:

eC = int 1 eC
= C (1, \dt-> int (1+1*dt) (· dt) )

q

z The problem is that (q dt) is not recognized as being the 
same as q.  What we’d really like is:
eC = ...

= C (1, \dt-> int (1+1*dt) ·)

= C (1, \dt-> let loop = int (1+dt) loop in loop

z But this needs to happen on each step in the computation, 
and thus needs to be part of the evaluation strategy.

z Indeed, both optimal reduction [Levy,Lamping] and 
(interestingly) completely lazy evaluation [Sinot] do this, 
and the space / time leak goes away!



Final Thoughts

z Being able to redefine recursion (via fix) is a Good Thing!
z What is the “correct” evaluation strategy for a compiler?
z John Hughes’ original motivation for arrows arose out of 

the desire to plug a space leak in monadic parsers – is 
this just a coincidence?

z There are many other performance issues involving 
arrows (e.g. excessive tupling) and we are exploring 
optimization methods (e.g. using arrows laws, zip/unzip 
fusion, etc).

z An ambitous goal: real-time sound generation for 
Haskore / HasSound on stock hardware.



The End



Monadic Parsers

z Need failure and choice:
class Monad m => MonadZero m where

zero :: m a
class MonadZero m => MonadPlus m where

(++) :: m a -> m a -> m a

z p1 ++ p2 means “try parse p1 – if it fails, then try p2.”

z A monadic parser based on:
data Parser s a = P ([s] -> Maybe (a,[s]))

leads to a space leak: 
processing p1 ++ p2 requires holding on
to the stream being parsed by p1.



Plugging the Leak

z This problem can be fixed through some cleverness that 
leads to this representation of parsers:
data Parser s a = P (StaticP s) (DynamicP s a)

z The cleverness requires that (++) see the static part of 
both of its arguments – but there’s no way to achieve this 
with bind:
(>>=) :: Parser s a -> (a -> Parser s b) -> Parser s b)

z What to do?  Make “(a -> Parser s b)” abstract – i.e. 
define an arrow Parser a b.



Arrows

z A b c is the arrow type of computations that take 
inputs of type b and produce outputs of type c.

z The arrow combinators impose a point-free 
programming style:
arr :: (b -> c) -> A b c arr f:
(>>>) :: A b c -> A c d -> A b d f >>> g:
first :: A b c -> A (b,d) (c,d) first f:
(***) :: A b d -> A c e -> A (b,c) (d,e)  f***g:

Every pure function may be 
treated as a computation Computations can be 
composed sequentially

A computation may be applied 
to part of the input

fb c

f gcb d

f

d d

b cTwo computations can be 
composed in parallel

f
c e

b d

g



Arrow and ArrowLoop classes

z As with monads, we use type classes to capture the 
arrow combinators.

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b,d) (c,d)

class Arrow a => ArrowLoop a where
loop :: a (b,d) (c,d) -> a b c

(loop can be thought of as a fixpoint operator for arrows.)



Graphical Depiction of 
Arrow Combinators
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z Conceptually: SF a b = Signal a -> Signal b
z But it is more efficient to design from scratch:

data SF a b = SF (a -> (b, DTime -> SF a b))

instance Arrow SF where
arr f x        = (f x, \dt -> arr f)
first f (x, z) = ((y, z),  first . f‘)

where (y, f') = f x
(f >>> g) x    = (z, \dt -> f' dt >>> g' dt)

where (y, f') = f x
(z, g') = g y

instance ArrowLoop SF where
loop f x = (y, loop . f')

where ((y, z), f') = f (x, z)

(Note “tight” recursion.)

Signal Functions in Yampa
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