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The Problem

• GHC has rich support for concurrency & 
parallelism:

– Lightweight threads (fast)

– Transparent scaling on a multiprocessor

– STM

– par/seq

– Multithreaded FFI

– Asynchronous exceptions

• But…



The Problem

• … it is inflexible.  

– The implementation is entirely in the 

runtime

– Written in C

– Modifying the implementation is hard: it is 

built using OS threads, locks and condition 

variables.

– Can only be updated with a GHC release



Why do we care?

• The concurrency landscape is changing.
– New abstractions are emerging; e.g. we might 

want to experiment with variants of STM

– We might want to experiment with scheduling 
policies: e.g. STM-aware scheduling, or load-
balancing algorithms

– Our scheduler doesn’t support everything: it 
lacks priorities, thread hierarchies/groups

– Certain applications might benefit from 
application-specific scheduling

– For running the RTS on bare hardware, we want 
a new scheduler



The Idea
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What is ???

• We call it the substrate interface

• The Rules of the Game:
– as small as possible: mechanism, not policy

– We must have lightweight threads

– Scheduling, “threads”, blocking, communication, 
CPU affinity etc. are the business of the library

– The RTS provides: 
• GC

• multi-CPU execution

• stack management

– Must be enough to allow GHC’s concurrency support 
to be implemented as a library



The substrate

------- (1) Primitive Transaction Memory
data PTM a
data PVar a
instance Monad PTM
newPVar    :: a -> PTM (PVar a)
readPVar   :: PVar a -> PTM a
writePVar  :: PVar a -> a -> PTM ()
catchPTM   :: PTM a -> (Exception->PTM a)

-> PTM a
atomicPTM  :: PTM a -> IO a

------- (2) Haskell Execution Context
data HEC
instance Eq HEC
instance Ord HEC
getHEC     :: PTM HEC
waitCond   :: PTM (Maybe a) -> IO a
wakeupHEC  :: HEC -> IO ()

------- (3) Stack Continuation
data SCont 
newSCont   :: IO () -> IO SCont
switch     :: (SCont -> PTM SCont)

-> IO ()

------- (4) Thread Local States
data TLSKey a 
newTLSKey  :: a -> IO (TLSKey a)
getTLS     :: TLSKey a -> PTM a
setTLS     :: TLSKey a -> a -> IO ()
initTLS    :: SCont -> TLSKey a -> a

-> IO ()

------- (5) Asynchronous Exceptions
raiseAsync   :: Exception -> IO ()
deliverAsync :: SCont -> Exception

-> IO ()

------- (6) Callbacks
rtsInitHandler :: IO ()
inCallHandler  :: IO a -> IO a
outCallHandler :: IO a -> IO a
timerHandler   :: IO ()
blockedHandler :: IO Bool -> IO ()



In the beginning…

foreign export ccall 
“haskell_main”
main :: IO ()

main = do …

…
haskell_main()
…

CHaskell

Haskell Execution Context



Haskell execution context

• Haskell code executes inside a HEC

• HEC = OS thread (or CPU) + state needed to run 
Haskell code
– Virtual machine state

– Allocation area, etc.

• A HEC is created by (and only by) a foreign in-call.

• Where is the scheduler?  I’ll come back to that.

data HEC
instance Eq HEC
instance Ord HEC
getHEC :: PTM HEC



Synchronisation

• There may be multiple HECs running 
simultaneously.  They need a way to synchronise 
access to shared data: scheduler data structures, 
for example.

• Use locks & condition variables?
– Too hard to program with

– Bad interaction with laziness:

– (MVars have this problem already)

do { takeLock lk
; rq <- read readyQueueVar
; rq' <- if null rq then ...

else ...
; write readyQueueVar rq'
; releaseLock lk }



PTM

• Transactional memory?

– A better programming model: compositional

– Sidesteps the problem with laziness: a 

transaction holds no locks while executing

– We don’t need blocking at this level (STM’s 

retry)
data PTM a
data PVar a
instance Monad PTM
newPVar :: a -> PTM (PVar a)
readPVar :: PVar a -> PTM a
writePVar :: PVar a -> a -> PTM ()
catchPTM :: PTM a -> (Exception -> PTM a) -> PTM a
atomicPTM :: PTM a -> IO a



Stack continuations

• Primitive threads: the RTS provides 

multiple stacks, and a way to switch 

execution from one to another.

data SCont 
newSCont   :: IO () -> IO SCont
switch     :: (SCont -> PTM SCont) -> IO ()

Creates a new stack to run the 

supplied IO action 
Switches control to a new stack.

Can decide not to switch, by 

returning the current stack.

PTM very important!



Stack Continuations

• Stack continuations are cheap

• Implementation: just a stack object and a 

stack pointer.  

• Using a stack continuation multiple times 

is an (un)checked runtime error.

• If we want to check that an SCont is not 

used multiple times, need a separate 

object.



Putting it together: 
a simple scheduler

• Design a scheduler supporting threads, 

cooperative scheduling and MVars.

runQueue :: [SCont]
runQueue <- newPVar []

addToRunQueue :: SCont -> PTM ()
addToRunQueue sc = do 
q <- readPVar runQueue
writePVar runQueue (q++[sc]) 

data ThreadId = ThreadId SCont

forkIO :: IO () -> IO ThreadId
forkIO action = do 

sc <- newSCont action
atomicPTM (addToRunQueue sc)
return (ThreadId sc)



yield

• Voluntarily switches to the next thread on 

the run queue

popRunQueue :: IO SCont
popRunQueue = do

scs <- readPVar runQueue
case scs of

[] -> error “deadlock!”
(sc:scs) -> do

writePVar runQueue scs
return sc

yield :: IO ()
yield = 
switch $ \sc -> do
addToRunQueue sc
popRunQueue



MVar: simple communication

• MVar is the original communication 

abstraction from Concurrent Haskell

• takeMVar blocks if the MVar is empty

• takeMVar is fair (FIFO), and single-

wakeup

• resp. putMVar

data MVar a
takeMVar :: MVar a -> IO a
putMVar  :: MVar a -> a -> IO ()



Implementing MVars

data MVar a = MVar (PVar (MVState a))
data MVState a = Full a [(a,      SCont)]

| Empty  [(PVar a, SCont)]

takeMVar :: MVar a -> IO a
takeMVar (MVar mv) = do
buf <- atomicPTM $ newPVar undefined
switch $ \c -> do
state <- readPVar mv
case state of 
Full x [] -> do
writePVar mv $ Empty []
writePVar buf x
return c

Full x l@((y,wakeup):ts) -> do
writePVar mv $ Full y ts
writePVar buf x
addToRunQueue wakeup
return c

Empty ts -> do
writePVar mv $ Empty (ts++[(buf,c)])
popRunQueue

atomicPTM $ readPVar buf

This will hold the result

MVar is full, no other 

threads waiting to put. 

Make the MVar empty and 

return

MVar is full, there are other 

threads waiting to put. 

Wake up one thread and 

return.

MVar is empty: add this 

thread to the end of the 

queue, and yield.When switch returns, buf 

will contain the value we 

read.



PTM Wins

• This implementation of takeMVar still works in a 
multiprocessor setting!

• The tricky case:
– one CPU is in takeMVar, about to sleep, putting the current 

thread on the queue

– another CPU is in putMVar, taking the thread off the queue and 
running it

– but switch hasn’t returned yet: the thread is not ready to run.  
BANG!

• This problem crops up in many guises.  Existing runtimes 
solve it with careful use of locks, e.g. a lock on the thread, 
or on the queue, not released until the last minute (GHC).  
Another solution is to have a flag on the thread indicating 
whether it is ready to run (CML).

• With PTM and switch this problem just doesn’t exist: when 
switch’s transaction commits, the thread is ready to run.



Semantics

• The substrate interface has an 

operational semantics (see paper)

• Now to flesh out the design…



Pre-emption

• The concurrency library should provide a 

callbck handler:

• the RTS causes each executing HEC to 

invoke timerHandler at regular 

intervals.

• We can use this in our simple scheduler 

to get pre-emption:

timerHandler :: IO ()

timerHandler :: IO ()
timerHandler = yield



Thunks

• If two HECs are evaluating the same thunk 
(suspension), the RTS may decide to suspend 
one of them1

• The current RTS keeps a list of threads 
blocked on thunks, and periodically checks 
whether any can be awakened.

• The substrate provides another callback:

• Simplest implementation:

1  Haskell on a Shared-Memory Multiprocessor (Tim Harris, Simon Marlow, Simon Peyton Jones) 

blockedHandler :: IO Bool -> IO ()

blockedHandler :: IO ()
blockedHandler = yield

can be used to poll



Thread-local state

• In a multiprocessor setting, one global 

run queue is a bad idea.  We probably 

want one scheduler per CPU.

• A thread needs to ask “what is my 

scheduler?”:  thread-local state

• Simple proposal:
data TLSKey a 
newTLSKey  :: a -> IO (TLSKey a)
getTLS     :: TLSKey a -> PTM a
setTLS     :: TLSKey a -> a -> IO ()
initTLS    :: SCont -> TLSKey a -> a -> IO ()



Multiprocessors:
sleeping HECs

• On a multiprocessor, we will have multiple 

HECs, each of which has a scheduler.

• When a HEC has no threads to run, it must idle 

somehow.  Busy waiting would be bad, so we 

provide more functionality to put HECs to 

sleep:

waitCond :: PTM (Maybe a) -> IO a
wakeupHEC :: HEC -> IO ()

“execute the PTM 

transaction repeatedly 

until it returns Just a, 

then deliver a”

Poke the given HEC and 

make it re-execute its 

waitCond transaction.

• A bit like STM’s retry, but 

less automatic



Multiprocessor scheduler

• One scheduler (run queue) per CPU

• Scheduler has its own SCont

yield = 
switch $ \sc -> do
addToRunQueue sc
sched_var <- readTLS mySchedulerKey
sched <- readPVar sched_var
return sched

schedule sched_var = do
thread <- waitCond popRunQueue
switch $ \sc -> do
writePVar sched_var sc
return thread



Foreign calls

• Foreign calls and concurrency interact:
– in-calls from multiple OS threads (Haskell as a 

multithreaded foreign API)

– an out-call may block, we want to schedule 
another Haskell thread when this happens

– out-calls can make in-calls (callbacks)

– sometimes, out-calls need to be made in a 
particular OS thread (“bound threads”)

• All of the above can be implemented in the 
concurrency library, all we need are some 
small additions to the substrate…



Foreign calls, cont.

• Two concurrency library callbacks:

• When an in-call happens, the RTS
– makes a new HEC,

– executes inCallHandler (f args…)

– inCallHandler can e.g. create a new scheduler, or add this 
thread to the run queue of an existing scheduler (GHC currently 
does the latter)

• For each out-call
– the compiler generates outCallHandler (f args…)

– outCallHandler can e.g. arrange to switch to another HEC to 
make the call, or wake up another HEC to schedule more 
Haskell threads.

• The scheduler support for the full FFI is complex, but the 
substrate is simple.

inCallHandler  :: IO a -> IO a
outCallHandler :: IO a -> IO a



Asynchronous exceptions

• Phew



Performance

• Time in (s):

• spawn-test: benchmarks forkIO

• the others benchmark MVar performance

• fake PTM: PTM implementation with no atomicity

• real PTM: based on existing STM implementation

• Prototype concurrency library is 2-4 times slower 
than existing RTS.



Performance



The (lack of a) conclusion

• We get a great research platform…

• Is a factor of 2-4 a reasonable price to pay for the extra flexibility?
– For concurrent programs, performance of concurrency is not usually 

the bottleneck

– but the scheduler might be critical for parallel performance

– STM on top of PTM is possible, but hairy

• Most users don’t care about the extra flexibilty

• better reliability (maybe), but is it really easier to debug?

• Have to worry about: the scheduler being pre-empted, blocking, 
running out of stack (non-issues with the C version)

• The “scheduler tax” is high: a scheduler must implement blocking, 
MVars, STM, FFI, asynchronous exceptions, par.  Few people will 
write a scheduler, most likely we’ll provide an extensible one.
– could we just make the existing scheduler extensible?

• Major issues for users are debugging concurrency, and debugging 
parallel performance.  Does this enable improvements there?


