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A designer’s perspective

The goal is to design systems that 
meet some criteria such as cost, 
performance, power, compatibility, 
robustness, …
The design effort and the time-to-
market matter    ($$$)

Can formal methods help?
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Examples

IP Lookup in a router
802.11a Transmitter
H.264 Video Codec
OOO Processors
Cache Coherence Protocols
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Example 1: Simple deterministic functionality

Internet router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on 
the “Longest Prefix Match” 
(LPM) of it’s IP address with 
entries in a routing table
Line rate and the order of 
arrival must be maintained line rate ⇒ 15Mpps for 10GE
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“C” version of LPM
int
lpm (IPA ipa)  
/*  3 memory lookups */
{  int p;

/*  Level 0: 8 bits  */
    p = RAM [ipa[31:24]]; 
    if (isLeaf(p)) return value(p);

/*  Level 1: 8 bits  */
    p = RAM [ipa[23:16]]; 
    if (isLeaf(p)) return value(p);

/*  Level 2: 8 bits  */
    p = RAM [ptr(p) + ipa [15:8]];  
    if (isLeaf(p)) return value(p);

/*  Level 3:  8 bits  */
    p = RAM [ptr(p) + ipa [7:0]];    

return value(p);  
     /* must be a leaf */
}

Not obvious from the C 
code how to deal with   
   - memory latency
   - pipelining

Must process a packet every 1/15 µs or 67 ns

Must sustain 4 memory dependent lookups in 67 ns

Memory latency 
~30ns to 40ns

Real LPM algorithms are more complex
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An implementation:

Circular pipeline
enter? done?RAM

yes
inQ

fifo

no

outQ

Does the look up produce the right answer?
 Easy: check it against the C program

Performance concern: Are there any “dead 
cycles”?
 Has direct impact on memory cost

Do answers come out in the right order?
 Is it even possible to express in a given logic?
 Alternative: The designer tags input messages and 

checks that the tags are produced in order



May 27, 2008 L1-7http://csg.csail.mit.edu/arvind

Example 2: Dealing with Noise

802.11a Transmitter

Controller Scrambler Encoder

Interleaver Mapper

Cyclic
Extend

headers

data

accounts for 85% area

24 
Uncoded 

bits

Must produce one OFDM symbol 
(64 Complex Numbers) every 4 µsec

IFFT
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Verification Issues
Control is straightforward

 Small amounts of testing against the C code 
is sufficient, provided the arithmetic is 
implemented correctly
 C code may have to be instrumented to capture 

the intermediate values in the FIFOs
 No corner cases in the computation in 

various blocks
  High-confidence with a few correct packets 

Still may be worthwhile proving that the (non standard) 
arithmetic library is implemented correctly
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802.11a transceiver:

Higher-level correctness
Does the receiver actually recover the full 
class of corrupted packets as defined in the 
standard?
 Designers totally ignore this issue 
 This incorrectness is likely to have no impact on 

sales

Who would know?

If we really wanted to test for this, we could 
do it by generating the maximally-correctable 
corrupted traffic

All these are purely academic questions!
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Example 3: Lossy encodings

H.264 Video Decoder

The standard is 400+ pages of English; the standard 
implementation is 80K lines of convoluted C. Each is 
incomplete!

Only viable correctness criterion is bit-level matching against 
the reference implementation on sample videos

Parallelization is more complicated than what one may guess 
based on the dataflow diagram because of data-dependencies 
and feedback
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H.264 Decoder: 
Implementation

Different requirements for different environments
 QVGA 320x240p (30 fps)
 DVD 720x480p
 HD DVD 1280x720p (60-75 fps)

Each context requires a different amount of parallelism 
in different blocks
 Modular refinement is necessary
 Verifying the correctness of refinements requires 

traditional formal techniques (pipeline abstraction, etc.)

NAL
unwrap

Parse
+

CAVLC

Inverse 
Quant 

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
o
m

p
re

ss
e

d
 B

it
s

Fr
am

e
s



May 27, 2008 L1-12http://csg.csail.mit.edu/arvind

Example 4: Absolute Correctness is required

Microprocessor design
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“Automated” Processor 
Verification

Models are abstracted from (real) designs
 UCLID – Bryant (CMU) : OOO Processor hand 

translated into CLU logic (synthetic)
 Cadence SMV - McMillian : Tomasulo Algorithm 

(hand written model. synthetic)
 ACL – Jay Moore: (Translate into Lisp)
 …

Some property of the manually abstracted 
model is verified
 Great emphasis (and progress) on automated 

decision procedures

Since abstraction is not automated it is 
not clear what is being verified!

BAT[Manolios et al] is a move in the right direction
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Automatic extraction of 
abstract models from designs 
expressed in Verilog or C or 
SystemC is a lost cause
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It took Joe Stoy 
more than 6 
months to learn 
PVS and show that 
some of the proofs 
in Xiaowei Shen’s 
thesis were correct

This technology is 
not ready for design 
engineers 

Example 5: nondeterministic specifications

Cache Coherence
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Model Checking
CC is one of the most popular applications of 
model checking
The abstract protocol needs to be abstracted 
more to avoid state explosion
 For example, only 3 CPUs, 2 addresses

There is a separate burden of proof why the 
abstraction is correct
Nevertheless model checking is a very useful 
debugging aid for the verification of abstract 
CC protocols
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Implementation
Design is expressed in some notation 
which is NOT used directly to generate 
an implementation
 The problem of verification of the actual 

protocol remains formidable
 Testing cannot uncover all bugs because of 

the huge non-deterministic space

Proving the correctness of cache 
coherence protocol implementations 
remains a challenging problem 
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Summary 
The degree of correctness required depends 
upon the application 
 Different applications require vastly different formal 

and informal techniques

Formal tools must be tied directly to high-level 
design languages 

Formal techniques should be presented as 
debugging aids during the design process
 A designer is unlikely to do any thing for the sake of 

helping the post design verification

The real success of a formal 
technique is when it is used 
ubiquitously without the 
designer being aware of it 

e.g., type systems
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