
May 27, 2008 L1-1http://csg.csail.mit.edu/arvind

Why formal verification remains
on the fringes of commercial
development

Arvind
Computer Science & Artificial Intelligence Laboratory
Massachusetts Institute of Technology

WG2.8, Park City, Utah
June 16, 2008

May 27, 2008 L1-2http://csg.csail.mit.edu/arvind

A designer’s perspective

The goal is to design systems that
meet some criteria such as cost,
performance, power, compatibility,
robustness, …
The design effort and the time-to-
market matter ($$$)

Can formal methods help?

May 27, 2008 L1-3http://csg.csail.mit.edu/arvind

Examples

IP Lookup in a router
802.11a Transmitter
H.264 Video Codec
OOO Processors
Cache Coherence Protocols

In
creasin

g
ly

ch
allen

g
in

g

May 27, 2008 L1-4http://csg.csail.mit.edu/arvind

Example 1: Simple deterministic functionality

Internet router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on
the “Longest Prefix Match”
(LPM) of it’s IP address with
entries in a routing table
Line rate and the order of
arrival must be maintained line rate ⇒ 15Mpps for 10GE

May 27, 2008 L1-5http://csg.csail.mit.edu/arvind

“C” version of LPM
int
lpm (IPA ipa)
/* 3 memory lookups */
{ int p;

/* Level 0: 8 bits */
 p = RAM [ipa[31:24]];
 if (isLeaf(p)) return value(p);

/* Level 1: 8 bits */
 p = RAM [ipa[23:16]];
 if (isLeaf(p)) return value(p);

/* Level 2: 8 bits */
 p = RAM [ptr(p) + ipa [15:8]];
 if (isLeaf(p)) return value(p);

/* Level 3: 8 bits */
 p = RAM [ptr(p) + ipa [7:0]];

return value(p);
 /* must be a leaf */
}

Not obvious from the C
code how to deal with
 - memory latency
 - pipelining

Must process a packet every 1/15 µs or 67 ns

Must sustain 4 memory dependent lookups in 67 ns

Memory latency
~30ns to 40ns

Real LPM algorithms are more complex

…

0

…

0

…

0…

0

28-1

May 27, 2008 L1-6http://csg.csail.mit.edu/arvind

An implementation:

Circular pipeline
enter? done?RAM

yes
inQ

fifo

no

outQ

Does the look up produce the right answer?
 Easy: check it against the C program

Performance concern: Are there any “dead
cycles”?
 Has direct impact on memory cost

Do answers come out in the right order?
 Is it even possible to express in a given logic?
 Alternative: The designer tags input messages and

checks that the tags are produced in order

May 27, 2008 L1-7http://csg.csail.mit.edu/arvind

Example 2: Dealing with Noise

802.11a Transmitter

Controller Scrambler Encoder

Interleaver Mapper

Cyclic
Extend

headers

data

accounts for 85% area

24
Uncoded

bits

Must produce one OFDM symbol
(64 Complex Numbers) every 4 µsec

IFFT

May 27, 2008 L1-8http://csg.csail.mit.edu/arvind

Verification Issues
Control is straightforward

 Small amounts of testing against the C code
is sufficient, provided the arithmetic is
implemented correctly
 C code may have to be instrumented to capture

the intermediate values in the FIFOs
 No corner cases in the computation in

various blocks
 High-confidence with a few correct packets

Still may be worthwhile proving that the (non standard)
arithmetic library is implemented correctly

May 27, 2008 L1-9http://csg.csail.mit.edu/arvind

802.11a transceiver:

Higher-level correctness
Does the receiver actually recover the full
class of corrupted packets as defined in the
standard?
 Designers totally ignore this issue
 This incorrectness is likely to have no impact on

sales

Who would know?

If we really wanted to test for this, we could
do it by generating the maximally-correctable
corrupted traffic

All these are purely academic questions!

May 27, 2008 L1-10http://csg.csail.mit.edu/arvind

Example 3: Lossy encodings

H.264 Video Decoder

The standard is 400+ pages of English; the standard
implementation is 80K lines of convoluted C. Each is
incomplete!

Only viable correctness criterion is bit-level matching against
the reference implementation on sample videos

Parallelization is more complicated than what one may guess
based on the dataflow diagram because of data-dependencies
and feedback

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
o
m

p
re

ss
e

d
 B

it
s

Fr
am

es

Errors don’t
matter much

May 27, 2008 L1-11http://csg.csail.mit.edu/arvind

H.264 Decoder:
Implementation

Different requirements for different environments
 QVGA 320x240p (30 fps)
 DVD 720x480p
 HD DVD 1280x720p (60-75 fps)

Each context requires a different amount of parallelism
in different blocks
 Modular refinement is necessary
 Verifying the correctness of refinements requires

traditional formal techniques (pipeline abstraction, etc.)

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
o
m

p
re

ss
e

d
 B

it
s

Fr
am

e
s

May 27, 2008 L1-12http://csg.csail.mit.edu/arvind

Example 4: Absolute Correctness is required

Microprocessor design
Empty

Waiting
Dispatched

Killed
Done

E
W
Di
K
Do

Head

Tail

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V 0 -Instr B V 0W

V 0 -Instr C V 0W

-Instr D V 0W

V 0 -Instr A V 0W

V - -Instr - V -

V - -Instr - V -E

E

E

E

E

E

E

E

E

E

E

E

V 0

Re-Order Buffer

Insert an
instr into

ROB

Decode
Unit

Register
File

Get operands
for instr

Writeback
results

Get a ready
ALU instr

Get a ready
MEM instr

Put ALU instr
results in ROB

Put MEM instr
results in ROB

ALU
Unit(s)

MEM
Unit(s)Resolve

branches

Operand 1 ResultInstruction Operand 2State

May 27, 2008 L1-13http://csg.csail.mit.edu/arvind

“Automated” Processor
Verification

Models are abstracted from (real) designs
 UCLID – Bryant (CMU) : OOO Processor hand

translated into CLU logic (synthetic)
 Cadence SMV - McMillian : Tomasulo Algorithm

(hand written model. synthetic)
 ACL – Jay Moore: (Translate into Lisp)
 …

Some property of the manually abstracted
model is verified
 Great emphasis (and progress) on automated

decision procedures

Since abstraction is not automated it is
not clear what is being verified!

BAT[Manolios et al] is a move in the right direction

May 27, 2008 L1-14http://csg.csail.mit.edu/arvind

Automatic extraction of
abstract models from designs
expressed in Verilog or C or
SystemC is a lost cause

May 27, 2008 L1-15http://csg.csail.mit.edu/arvind

It took Joe Stoy
more than 6
months to learn
PVS and show that
some of the proofs
in Xiaowei Shen’s
thesis were correct

This technology is
not ready for design
engineers

Example 5: nondeterministic specifications

Cache Coherence

May 27, 2008 L1-16http://csg.csail.mit.edu/arvind

Model Checking
CC is one of the most popular applications of
model checking
The abstract protocol needs to be abstracted
more to avoid state explosion
 For example, only 3 CPUs, 2 addresses

There is a separate burden of proof why the
abstraction is correct
Nevertheless model checking is a very useful
debugging aid for the verification of abstract
CC protocols

May 27, 2008 L1-17http://csg.csail.mit.edu/arvind

Implementation
Design is expressed in some notation
which is NOT used directly to generate
an implementation
 The problem of verification of the actual

protocol remains formidable
 Testing cannot uncover all bugs because of

the huge non-deterministic space

Proving the correctness of cache
coherence protocol implementations
remains a challenging problem

May 27, 2008 L1-18http://csg.csail.mit.edu/arvind

Summary
The degree of correctness required depends
upon the application
 Different applications require vastly different formal

and informal techniques

Formal tools must be tied directly to high-level
design languages

Formal techniques should be presented as
debugging aids during the design process
 A designer is unlikely to do any thing for the sake of

helping the post design verification

The real success of a formal
technique is when it is used
ubiquitously without the
designer being aware of it

e.g., type systems

	Slide 1
	A designer’s perspective
	Examples
	Example 1: Simple deterministic functionality Internet router
	“C” version of LPM
	An implementation: Circular pipeline
	Example 2: Dealing with Noise 802.11a Transmitter
	Verification Issues
	802.11a transceiver: Higher-level correctness
	Example 3: Lossy encodings H.264 Video Decoder
	H.264 Decoder: Implementation
	Example 4: Absolute Correctness is required Microprocessor design
	“Automated” Processor Verification
	Slide 14
	Slide 15
	Model Checking
	Implementation
	Summary

