
May 27, 2008 L1-1http://csg.csail.mit.edu/arvind

Why formal verification remains
on the fringes of commercial
development

Arvind
Computer Science & Artificial Intelligence Laboratory
Massachusetts Institute of Technology

WG2.8, Park City, Utah
June 16, 2008

May 27, 2008 L1-2http://csg.csail.mit.edu/arvind

A designer’s perspective

The goal is to design systems that
meet some criteria such as cost,
performance, power, compatibility,
robustness, …
The design effort and the time-to-
market matter ($$$)

Can formal methods help?

May 27, 2008 L1-3http://csg.csail.mit.edu/arvind

Examples

IP Lookup in a router
802.11a Transmitter
H.264 Video Codec
OOO Processors
Cache Coherence Protocols

In
creasin

g
ly

ch
allen

g
in

g

May 27, 2008 L1-4http://csg.csail.mit.edu/arvind

Example 1: Simple deterministic functionality

Internet router

Queue
Manager

Packet Processor

Exit functions

Control
Processor

Line Card (LC)

IP Lookup

SRAM
(lookup table)

Arbitration

Switch

LC

LC

LC

A packet is routed based on
the “Longest Prefix Match”
(LPM) of it’s IP address with
entries in a routing table
Line rate and the order of
arrival must be maintained line rate ⇒ 15Mpps for 10GE

May 27, 2008 L1-5http://csg.csail.mit.edu/arvind

“C” version of LPM
int
lpm (IPA ipa)
/* 3 memory lookups */
{ int p;

/* Level 0: 8 bits */
 p = RAM [ipa[31:24]];
 if (isLeaf(p)) return value(p);

/* Level 1: 8 bits */
 p = RAM [ipa[23:16]];
 if (isLeaf(p)) return value(p);

/* Level 2: 8 bits */
 p = RAM [ptr(p) + ipa [15:8]];
 if (isLeaf(p)) return value(p);

/* Level 3: 8 bits */
 p = RAM [ptr(p) + ipa [7:0]];

return value(p);
 /* must be a leaf */
}

Not obvious from the C
code how to deal with
 - memory latency
 - pipelining

Must process a packet every 1/15 µs or 67 ns

Must sustain 4 memory dependent lookups in 67 ns

Memory latency
~30ns to 40ns

Real LPM algorithms are more complex

…

0

…

0

…

0…

0

28-1

May 27, 2008 L1-6http://csg.csail.mit.edu/arvind

An implementation:

Circular pipeline
enter? done?RAM

yes
inQ

fifo

no

outQ

Does the look up produce the right answer?
 Easy: check it against the C program

Performance concern: Are there any “dead
cycles”?
 Has direct impact on memory cost

Do answers come out in the right order?
 Is it even possible to express in a given logic?
 Alternative: The designer tags input messages and

checks that the tags are produced in order

May 27, 2008 L1-7http://csg.csail.mit.edu/arvind

Example 2: Dealing with Noise

802.11a Transmitter

Controller Scrambler Encoder

Interleaver Mapper

Cyclic
Extend

headers

data

accounts for 85% area

24
Uncoded

bits

Must produce one OFDM symbol
(64 Complex Numbers) every 4 µsec

IFFT

May 27, 2008 L1-8http://csg.csail.mit.edu/arvind

Verification Issues
Control is straightforward

 Small amounts of testing against the C code
is sufficient, provided the arithmetic is
implemented correctly
 C code may have to be instrumented to capture

the intermediate values in the FIFOs
 No corner cases in the computation in

various blocks
 High-confidence with a few correct packets

Still may be worthwhile proving that the (non standard)
arithmetic library is implemented correctly

May 27, 2008 L1-9http://csg.csail.mit.edu/arvind

802.11a transceiver:

Higher-level correctness
Does the receiver actually recover the full
class of corrupted packets as defined in the
standard?
 Designers totally ignore this issue
 This incorrectness is likely to have no impact on

sales

Who would know?

If we really wanted to test for this, we could
do it by generating the maximally-correctable
corrupted traffic

All these are purely academic questions!

May 27, 2008 L1-10http://csg.csail.mit.edu/arvind

Example 3: Lossy encodings

H.264 Video Decoder

The standard is 400+ pages of English; the standard
implementation is 80K lines of convoluted C. Each is
incomplete!

Only viable correctness criterion is bit-level matching against
the reference implementation on sample videos

Parallelization is more complicated than what one may guess
based on the dataflow diagram because of data-dependencies
and feedback

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
o
m

p
re

ss
e

d
 B

it
s

Fr
am

es

Errors don’t
matter much

May 27, 2008 L1-11http://csg.csail.mit.edu/arvind

H.264 Decoder:
Implementation

Different requirements for different environments
 QVGA 320x240p (30 fps)
 DVD 720x480p
 HD DVD 1280x720p (60-75 fps)

Each context requires a different amount of parallelism
in different blocks
 Modular refinement is necessary
 Verifying the correctness of refinements requires

traditional formal techniques (pipeline abstraction, etc.)

NAL
unwrap

Parse
+

CAVLC

Inverse
Quant

Transformation

Deblock
Filter

Intra
Prediction

Inter
Prediction

Ref
Frames

C
o
m

p
re

ss
e

d
 B

it
s

Fr
am

e
s

May 27, 2008 L1-12http://csg.csail.mit.edu/arvind

Example 4: Absolute Correctness is required

Microprocessor design
Empty

Waiting
Dispatched

Killed
Done

E
W
Di
K
Do

Head

Tail

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V - -Instr - V -

V 0 -Instr B V 0W

V 0 -Instr C V 0W

-Instr D V 0W

V 0 -Instr A V 0W

V - -Instr - V -

V - -Instr - V -E

E

E

E

E

E

E

E

E

E

E

E

V 0

Re-Order Buffer

Insert an
instr into

ROB

Decode
Unit

Register
File

Get operands
for instr

Writeback
results

Get a ready
ALU instr

Get a ready
MEM instr

Put ALU instr
results in ROB

Put MEM instr
results in ROB

ALU
Unit(s)

MEM
Unit(s)Resolve

branches

Operand 1 ResultInstruction Operand 2State

May 27, 2008 L1-13http://csg.csail.mit.edu/arvind

“Automated” Processor
Verification

Models are abstracted from (real) designs
 UCLID – Bryant (CMU) : OOO Processor hand

translated into CLU logic (synthetic)
 Cadence SMV - McMillian : Tomasulo Algorithm

(hand written model. synthetic)
 ACL – Jay Moore: (Translate into Lisp)
 …

Some property of the manually abstracted
model is verified
 Great emphasis (and progress) on automated

decision procedures

Since abstraction is not automated it is
not clear what is being verified!

BAT[Manolios et al] is a move in the right direction

May 27, 2008 L1-14http://csg.csail.mit.edu/arvind

Automatic extraction of
abstract models from designs
expressed in Verilog or C or
SystemC is a lost cause

May 27, 2008 L1-15http://csg.csail.mit.edu/arvind

It took Joe Stoy
more than 6
months to learn
PVS and show that
some of the proofs
in Xiaowei Shen’s
thesis were correct

This technology is
not ready for design
engineers

Example 5: nondeterministic specifications

Cache Coherence

May 27, 2008 L1-16http://csg.csail.mit.edu/arvind

Model Checking
CC is one of the most popular applications of
model checking
The abstract protocol needs to be abstracted
more to avoid state explosion
 For example, only 3 CPUs, 2 addresses

There is a separate burden of proof why the
abstraction is correct
Nevertheless model checking is a very useful
debugging aid for the verification of abstract
CC protocols

May 27, 2008 L1-17http://csg.csail.mit.edu/arvind

Implementation
Design is expressed in some notation
which is NOT used directly to generate
an implementation
 The problem of verification of the actual

protocol remains formidable
 Testing cannot uncover all bugs because of

the huge non-deterministic space

Proving the correctness of cache
coherence protocol implementations
remains a challenging problem

May 27, 2008 L1-18http://csg.csail.mit.edu/arvind

Summary
The degree of correctness required depends
upon the application
 Different applications require vastly different formal

and informal techniques

Formal tools must be tied directly to high-level
design languages

Formal techniques should be presented as
debugging aids during the design process
 A designer is unlikely to do any thing for the sake of

helping the post design verification

The real success of a formal
technique is when it is used
ubiquitously without the
designer being aware of it

e.g., type systems

	Slide 1
	A designer’s perspective
	Examples
	Example 1: Simple deterministic functionality Internet router
	“C” version of LPM
	An implementation: Circular pipeline
	Example 2: Dealing with Noise 802.11a Transmitter
	Verification Issues
	802.11a transceiver: Higher-level correctness
	Example 3: Lossy encodings H.264 Video Decoder
	H.264 Decoder: Implementation
	Example 4: Absolute Correctness is required Microprocessor design
	“Automated” Processor Verification
	Slide 14
	Slide 15
	Model Checking
	Implementation
	Summary

