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A designer’s perspective

N

#The goal is to design systems that
meet some criteria such as cost,
performance, power, compatibility,
robustness, ...

#The design effort and the time-to-
market matter ($%$9$)

Can formal methods help?
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Examples

N

#IP Lookup in a router

#802.11a Transmitter % §
#H.264 Video Codec 3@
#000 Processors &g
#Cache Coherence Protocols '
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Example 1: Simple deterministic functionality
Internet router
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“C"” version of LPM

N

%
int
Ipm (IPA ipa) 0
/* 3 memory lookups */ 0 E 0 E/
/* Level 0: 8 bits */ - E
p = RAM [ipa[31:24]]; 2821 -
if (isLeaf(p)) return value(p);

/* Level 1: 8 bits */

p = RAM [ipa[23:16]];

if (isLeaf(p)) return value(p);
/* Level 2: 8 bits */

p = RAM [ptr(p) + ipa [15:8]]; Not obvious from the C

if (isLeaf(p)) return value(p); .

p = RAM [ptr(p) + ipa [7:01]; - memory latency
return value(p); . ..

/* must be a leaf */ - plpellnlng

>
Memory latency
Must process a packet every 1/15 us or 67 NS | ~30ns to 40ns

Must sustain 4 memory dependent lookups in 67 ns

Real LPM algorithms are more complex
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An implementation:
Circular pipeline

inQ outQ

® > enter? RAM m es .
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fifo

#Does the look up produce the right answer?
= Fasy: check it against the C program

N

\4

#Performance concern: Are there any “dead
cycles”?
= Has direct impact on memory cost

#Do answers come out in the right order?
= Js it even possible to express in a given logic?

= Alternative: The designer tags input messages and
checks that the tags are produced in order
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Example 2: Dealing with Noise

802.11a Transmitter
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Cyclic
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Must produce one OFDM symbol
(64 Complex Numbers) every 4 psec
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Verification Issues

N

Control is straightforward

" Small amounts of testing against the C code
is sufficient, provided the arithmetic is
implemented correctly

* C code may have to be instrumented to capture
the intermediate values in the FIFOs

= No corner cases in the computation in
various blocks

* High-confidence with a few correct packets

Still may be worthwhile proving that the (non standard)

arithmetic library is implemented correctly
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802.11a transceiver:
Higher-level correctness

L/

#Does the receiver actually recover the full
class of corrupted packets as defined in the
standard?

= Designers totally ignore this issue

= This incorrectness is likely to have no impact on
sales

N

Who would know?

#If we really wanted to test for this, we could
do it by generating the maximally-correctable
corrupted traffic

All these are purely academic questions!
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Example 3: Lossy encodings

H.264 Video Decoder
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{*!}The standard is 400+ pages of English; the standard
implementation is 80K lines of convoluted C. Each is
incomplete!

7

<@mnly viable correctness criterion is bit-level matching against
the reference implementation on sample videos

@Parallelization is more complicated than what one may guess
based on the dataflow diagram because of data-dependencies
and feedback

May 27, 2008 http://csg.csail.mit.edu/arvind L1-10



H.264 Decoder:
Implementation
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<§>Different requirements for different environments
= QVGA 320x240p (30 fps)
= DVD 720x480p
= HD DVD 1280x720p (60-75 fps)
#:Each context requires a different amount of parallelism
in different blocks
= Modular refinement is necessary

= Verifying the correctness of refinements requires
traditional formal techniques (pipeline abstraction, etc.)
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Example 4: Absolute Correctness is required

M|croprocessor design

/\

Insert an
Deco_de instr into
Unit ROB
Resolve
branches
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“Automated” Processor
Verification

" #Models are abstracted from (real) designs

= UCLID - Bryant (CMU) : OOO Processor hand
translated into CLU logic (synthetic)

= Cadence SMV - McMillian : Tomasulo Algorithm
(hand written model. synthetic)

= ACL - Jay Moore: (Translate into Lisp)

N

#Some property of the manually abstracted
model is verified

= Great emphasis (and progress) on automated
decision procedures

Since abstraction is not automated it is

not clear what is being verified!

BAT[Manolios et al] is a move in the right direction
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May 27, 2008

Automatic extraction of
abstract models from designs

expressed in Verilog or C or
SystemC is a lost cause
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Abstract. We deseribe twa procds of carrectness for Cachet, an adap
tive cache-coberence pratacal. Each prad demanstrates sanndness [can
firmance ta an abstract cache ey madkel CHF) and nesis. Lne
pracf is manual, bassl an a term-rewriting system definition; the ot her
B machine amskted, based an a TLA formmnlation and using PVE A twa
stage presentation of the pratocal simplifies the treatment of sowndness,
i amd in the praafs, by separating all venes cancerns. The
TLA farmulation demands preciion abaut what aspects af the system's
behaviar are abservable, bringing complicatian ta same parts which were
trivial in the mamal proaf. Handing a oo

pleted design aver for indepen

dent verification & unlikely ta be suooes the prover reqquires detailed
insight inta the design, and the designer must keep carmectness concerns

at the forefrant of the design pracess.

1 Introduction: Memory Models and Protocols
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A shaved memory system mplements a memory moded, which defines the
55 instrueticns. An ddeal memory mode] should al-
low efficient and scalable nplamentations while still havieg simple semantics

semanties of menory ¢

Example 5: nondeterministic specifications
Cache Coherence

#It took Joe Stoy
more than 6
months to learn
PVS and show that
some of the proofs
in Xiaowei Shen’s
thesis were correct

This technology is
not ready for design
engineers
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Model Checking

#CC is one of the most popular applications of
model checking

#The abstract protocol needs to be abstracted
more to avoid state explosion
= For example, only 3 CPUs, 2 addresses

#There is a separate burden of proof why the
abstraction is correct

#Nevertheless model checking is a very useful
debugging aid for the verification of abstract
CC protocols

N
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Implementation

N

#Design is expressed in some notation
which is NOT used directly to generate
an implementation

= The problem of verification of the actual
protocol remains formidable

" Testing cannot uncover all bugs because of
the huge non-deterministic space

Proving the correctness of cache

coherence protocol implementations
remains a challenging problem
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Summary

@The degree of_ correctness required depends

/\

debugging aids during the design process

= A designer is unlikely to do any thing for the sake of
helping the post design verification
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