
Koen Lindström Claessen,
Alejandro Russo, John Hughes
Chalmers University of Technology

WG2.8, Park City, Utah,
June 2008

 Passwords on UNIX systems

/etc/passwd

/etc/shadow

Universal Access

Root Access

Dictionary
attacks, offline

attacks, ...

 Passwords on UNIX systems

/etc/passwd

/etc/shadow

Universal Access

Root Access

Dictionary
attacks, offline

attacks, ...Linux Shadow Password HOWTO:
Adding shadow support to a C
program

”Adding shadow support to a
program is actually fairly
straightforward. The only problem is
that the program must be run by root
in order for the the program to be
able to access the /etc/shadow file.”

 For the sake of

 Intruders

 People we let in (plug-ins)

 Ourselves

 We want to restrict

 Access to data

 Where does data go?

 Where is it used?

”Information-flow
security”

Confidentiality
(aot integrity)

Program

high high

low low

Non-interference: Varying high
inputs should not affect low inputs

 Attacker

 Not trusted

 Intruder

 Programmer

 Yourself

 Everyone (including the attacker) can observe
low security outputs

 Study for ~30 years
 Active research field
 Compilers

 JIF (Java) 2001
▪ Cornell University

 FlowCaml (ML) 2002
▪ INRIA (not actively

developed)

 Impact on practice

 Limited!

 Possible to guarantee IF by
a library
 [Zdancewic & Li, 06]

 Haskell

 Arrows
 No need to write a

compiler from scratch
 DSEL approach: Quick

experimenting with ideas
 No restriction on the PL to

use due to security

 Limitations

 No side effects

 Extension to the library [Tsai, Russo,
Hughes’07]

 Major changes in the implementation of the library

 New arrows combinators

 Lack of arrow notation

 Why arrows?

 Zdancewic and Li mention that monads are
not suitable for the design of the library

 Light-weight
 Library-based
 Monad-based (not arrows)
 Restrict capabilities

 Abstract types

 Use of the module system

 Practical (?)

 Pure language

 No side effects

 (Controlled side effects)

 Strong type system

 Cannot ”cheat”

 No implicit information flow!

 Only explicit if secret == 3 then
print(1)

else
print(2)

f :: (Int {-secret-}, Char)

-> (Int {-secret-}, Char)

f (n, c) = (n + 1, chr (ord c + 1))

f (n, c) = (n + ord c, ’a’)

f (n, c) = (n + ord c, chr n)

f (n, c) | n > 0 = (42, c)

| otherwise = (1, chr (ord c + 1))

YES

YES

NO

NO

type Sec a -- abstract

sec :: a -> Sec a

open :: Sec a -> Key -> a

strict!

data Key = TheKey -- hidden

instance Functor Sec

instance Monad Sec

type A

type B

type C

type D

f :: (Sec A, B) -> (Sec C, D)

f (a1,b) = (c,d) => f (a2,b) = (c’,d)

type Sec s a -- abstract

sec :: a -> Sec s a

open :: Sec s a -> s -> a

data H = H -- abstract

data L = L -- public

class Less low high where

up :: Sec low a -> Sec high a

instance Less L H

instance Less L L

instance Less H H

Sec L a ~= a

Trusted
SecLib.hs Haskell

Libraries

Attacker/
Untrusted

Code

Trusted
Code

Public
SecLib.hs

Safe Haskell
Libraries

IO,
unsafePerformIO,

FFI, Exceptions

~400
LOC

 IO features

 File IO

 stdin/stdout

 State references

 Channels

 ...

 This talk: Only File IO

type File s -- abstract

readFileSec :: File s -> IO (Sec s String)

writeFileSec :: File s -> Sec s String -> IO ()

 ”Depending on a high value, write to file1 or
file2”

 Leads to result types

 IO (Sec H a)

 Sec H (IO (Sec H a))

 IO (Sec H (IO (Sec H a)))

 ...

 Need a new type for ”secure IO”

type SecIO s a -- abstract

peek :: Sec s a -> SecIO s a

readFileSec :: File s -> SecIO s String

writeFileSec :: File s -> String -> SecIO s ()

run :: SecIO s a -> IO (Sec s a)

* Read from level s or lower
* Write to level s or higher
* Produce a value at level s

Side effects escape
”Sec s”!

example :: Sec H Int -> SecIO s ()

example secret =

do x <- peek secret

if x == 42

then writeFileSec file1 ”foo”

else writeFileSec file2 ”bar”

main :: File H -> File L -> IO (Sec H Answer)
main shadow passwd = run (...)

shadow :: File H
passwd :: File L

main = ... Untrusted.main shadow passwd ...

type File m s -- abstract

data R

data W

readFileSec :: File R s -> SecIO s String

writeFileSec :: File W s -> String -> SecIO s ()

passwd :: File R L

shadow :: File R H

database :: File m H -- polymorphic

• Login program

• Get password from user input

• Check if it is correct (compare with shadow)

• Act accordingly

• It is necessary to leak information that depends on
secrets!

• cypher inp == pwd

• Not non-interferent

• Dimensions and principles of declassificaiton
[Sabelfeld and Sands, 06]

– What information can be leaked?

– When can information be leaked?

– Where in the program is it safe to leak information?

– Who can leak information?

• How to be certain that our programs
leak what they are supposed
to leak?

Program

high high

low low

 Our library should be able to handle
different kind of declassificaiton
policies

 Policies are programs!

 Trusted users of the library
implement them

 Controlled at run-time

 A module defines combinators for
different declassification policies
(what, when, who)

Trusted
Code

 Declassification is performed by functions

 Terminology: escape hatches [Sabelfeld and Myers, 2004]

 In our library:

 Example: checking password

type Hatch sH sL a b = Sec sH a -> Sec sL b

hatch :: (a -> b) -> Hatch sH sL a b -- hidden

check :: Hatch H L (String,Passwd) Bool

check = hatch (\(inp,pwd) -> cypher inp == pwd)

monomorphic

 We want to restrict capabilities of escape hatches

type Hatch sH sL a b =

Sec sH a -> IO (Maybe (Sec sL b))

internal state may fail

-- restricting ”what” (how often)

nTimes :: Int -> Hatch sH sL a b ->

IO (Hatch sH sL a b)

-- example

check =

nTimes 3

(hatch (\(inp,pwd) -> cypher inp == pwd))

-- restricting ”what” (how often)

nTimes :: Int -> Hatch sH sL a b ->

IO (Hatch sH sL a b)

nTimes n hatch =

do ref <- newIORef n

return (\x ->

do k <- readIORef ref

if k >= 0

then do writeIORef ref (k-1)

hatch x

else do return Nothing)

-- restricting ”when” (flow locks)

data Open = Open (IO ()) -- hidden

data Close = Close (IO ()) -- hidden

when :: Hatch sH sL a b ->

IO (Hatch sH sL a b, Open, Close)

-- restricting ”who” (flow locks)

data Authority s = Auth Open Close -- hidden

who :: Hatch sH sL a b ->

IO (Hatch sH sL a b, Authority sH)

-- for use by attacker

certify :: s -> Authority s -> IO a -> IO a

 Powerful
 Expressive

 Theory of declassification is in its infancy

 One dimension only

 Weak results

 In practice, we want to combine things

 Pragmatic

 ”Sec” -- obvious and trivial
 All other things

 SecIO

 Files

 References

 ...

 On top of Sec: also obvious
 With slight modification: small proof

To do

To do

 Modelled library + language as a Haskell
datatype

 Evaluate function

 Written a random generator

 Respecting types

 Expressed non-interference as a QuickCheck
property

 Counter-examples for unsound versions of the
library

 Light-weight library (~400 LOC)
 Practical
 Simple (Monads)

 Features: files, stdio/stdout, references

 Declassification

 Examples: login system, bidding,banking system
prototype,...

 Limitations
 Timing leaks

 Static security lattice

