A Library Approach to
Information Flow Security
In Haskell

ﬁ

Motivating Example

Password! Ms
ﬁ Universal Access
/etc/passwd

ﬁ Root Access

Jetc/shadow

Motivating Example

Password:

CJ

/etc/passwd

7

Jetc/shadow

Linux Shadow Password HOWTO:
Adding shadow supporttoaC
program

"Adding shadow supportto a
program is actually fairly
straightforward. The only problemiis
that the program must be run by root
in order for the the program to be
able to access the /etc/shadow file.”

The Problem

For the sake of
Intruders
People we let in (plug-ins)
Ourselves

We want to restrict
Access to data
Where does data go?
Where is it used?

The Model
high high
low \ low

"Attacker”

Attacker
Not trusted
ntruder

Programmer

Yourself
Everyone (including the attacker) can observe
low security outputs

Information-Flow Security

Study for ~30 years e .
Active research field 4|! | ” |

Compilers ‘ :

JIF (Java) 2001
CornellUniversity

FlowCaml (ML) 2002

INRIA (not actively
developed)

Impact on practice
Limited!

Encoding IF in Haskell

Possible to guarantee IF by
a library

[Zdancewic & Li, 06]

Haskell

Arrows
No need to write a
compiler from scratch
DSEL approach: Quick
experimenting with ideas
No restriction on the PL to
use due to security

Encoding IF in Haskell

Limitations

No side effects
Extension to the library [TsaizRusso,
Hughes'o7]
Major changes in the implementation of the library
New arrows combinators

Lack of arrow notation
Why arrows?

Zdancewic and Li mention that monads are
not suitable for the design of the library

Our Approach

Light-weight
Library-based
Monad-based (not arrows)
Restrict capabilities

Abstract types
Use of the module system

Practical (?)

Why Haskell?

Pure language
No side effects

(Controlled side effects)
Strong type system

Cannot “cheat”
No implicitinformation flow!

Only explicit

Example

f :: (Int {-secret-}, Char)
-> (Int {-secret-}, Char)

g

f (n, ¢) = (n + 1, chr (ord c + 1))

f (n, ¢) = (n + ord ¢, "a’)
f (n, ¢) = (n + ord ¢, chr n)l

f (n, ¢) | n >0 =
| otherwise

Simple Security API

type Sec a —-- abstract

sec :: a —> SecCc a
open :: Sec a —> Key -> a

data Key = TheKey —-- hidden

instance Functor Sec
instance Monad Sec

Non-Interference?

type
type
type
type

o Q w >

f :: (Sec A, B) -> (Sec C, D)

f (al,b) = (c,d) => £ (a2,b) (c’,d)

Multiple Security Levels

type Sec s a —- abstract
sec :: a —> Sec s a

open :: Sec s a —> s —-> a

Security Lattice

data H = H —-- abstract
data L = L —-- public

class Less low high where
up :: Sec low a —-> Sec high a

instance L.ess 1. H
instance Less L L
instance Less H H

Anatomy of Your Program

0,

unsafePerformlO,
FFI, Exceptions

T 4 Trusted
rus.te Code
SecLib.hs
Publi
. : & Attacker/
SecLib.hs
Untrusted

Code

~400
LOC

How About 10?

1O features
File IO
stdin/stdout
State references
Channels

This talk: Only File 10

First Try

type File s —-- abstract
readFileSec :: File s -> IO (Sec s String)

writeFileSec :: File s -> Sec s String -> I0 ()

High Control / Implicit Flow

"Depending on a high value, write to file1 or
file2"

Leads to result types
1O (Sec H a)
SecH (IO (Sec H a))
1O (Sec H (IO (Sec H a)))

Need a new type for “secure 10"

type SeclO s a
peek
readFileSec

writeFileSec

run

—-— abstract

Sec s a —> SecIO s a
File s -> SecIO s String
File s -> String -> SecIO s

SecIO s a -> IO (Sec s a)

()

example :: Sec H Int -> SecIO s ()
example secret =
do x <- peek secret
1f x == 42
then writeFileSec filel "foo”
else writeFileSec file2 ”"bar”

Anatomy of Your Program

shadow :: File H
passwd :: File L

main = ... Untrusted.main shadow passwd ...

main :: File H -> File L -> 1O (Sec H Answer)
main shadow passwd =run(...)

File Capabilities

type File m s —-- abstract

data R

data W

readFi1leSec :: File R s —-> SecIO s String
writeFi1leSec :: File W s -> String —-> SecIO s ()
passwd :: File R L

shadow :: File R H

database :: File m H —-- polymorphic

Information Flow in Practice

* L ogin program
e Get password from userinput
e Checkifitis correct (compare with shadow)
e Actaccordingly

e |tis necessary to leak information that depends on
secrets!
e cypherinp==pwd
e Notnon-interferent

Declassification

e Dimensions and principles of declassificaiton
[Sabelfeld and Sands, 06]
— What information can be leaked?
— When can information be leaked?
— Where in the programiis it safe to leak information?
— Who can leak information?

e How to be certain that our programs
leak what they are supposed
to leak?

The Adapted Model

high \ high

low \ low

Introducing Declassification in the

Library

Our library should be able to handle
different kind of declassificaiton
policies

Policies are programs!

Trusted users of the library]
implement them Truste

_ Code
Controlled at run-time

A module defines combinators for
different declassification policies
(what, when, who)

Escape Hatches

Declassification is performed by functions

Terminology: escape hatches [Sabelfeld and Myers, 2004]
In our library:

type Hatch sH sL a b = Sec sH a -> Sec sL b
hatch :: (a => b) —-> Hatch sH sL a b —-- hidden
Example: checking password

check :: Hatch H L (String, Passwd) Bool
check = hatch (\ (inp,pwd) -> cypher inp == pwd)

Escape Hatches

We want to restrict capabilities of escape hatches

type Hatch sH sL a b =
sec sH a -> I0 (Maybe (Sec sL b))

Declassification Combinators

-— restricting ”“what” (how often)
nTimes :: Int -> Hatch sH sL a b ->
IO (Hatch sH sL a b)

—-— example
check =
nTimes 3
(hatch (\ (inp,pwd) -> cypher inp == pwd))

Implementation

-— restricting ”“what” (how often)
nTimes :: Int -> Hatch sH sL a b ->
IO (Hatch sH sL a Db)
nTimes n hatch =
do ref <- newIORef n
return (\x ->
do k <- readIORef retf
if k >= 0
then do writeIORef ref (k-1)
hatch x
else do return Nothing)

Declassification Combinators

—-— restricting ”“when” (flow locks)

data Open = Open (IO ()) —— hidden
data Close = Close (IO ()) -- hidden
when :: Hatch sH sL a b —->

IO (Hatch sH sL a b, Open, Close)

Declassification Combinators

"who” (flow locks)

-— restricting
data Authority s = Auth Open Close —-- hidden

who :: Hatch sH sL a b ->
IO (Hatch sH sL a b, Authority sH)

—-— for use by attacker
certify s —-> Authority s -> IO a -> IO a

Declassification Combinators

Powerful
Expressive

Theory of declassification is in its infancy
One dimension only

Weak results
In practice, we want to combine things

Pragmatic

Correctness Proof

"Sec” -- obvious and trivial
All other things

SeclO
Files
References

On top of Sec: also obvious
With slight modification: small proof

QuickChecking Correctness

Modelled library + language as a Haskell
datatype
Evaluate function
Written a random generator
Respecting types
Expressed non-interference as a QuickCheck
property
Counter-examples for unsound versions of the
library

Conclusions

Light-weight library (~400 LOC)
Practical
Simple (Monads)
Features: files, stdio/stdout, references
Declassification

Examples: login system, bidding,banking system
prototype,...
Limitations

Timing leaks
Static security lattice

