Ajax and Client-Side Evaluation
of

Workflow Specifications

Rinus Plasmeijer - Jan Martin Jansen - Peter Achten - Pieter Koopman

University of Nijmegen - Dutch Defense Academy

clean.cs.ru.nl http://www.cs.ru.nl/~rinus/iTaskIntro.html




»  Recap on Workflow Systems & iTasks (ICFP 2007)
»  Implementation of i-Tasks
®  Basic implementation: Task Tree Reconstruction
®  Optimized: Task Tree Rewriting
"  Local Task Rewriting using "Ajax" technology
®  Client Side Local Task Rewriting using the SAPL interpreter

3 Conclusion & Future Research




1. What is a Workflow System?

A Workflow describes the operational aspects of work to be done

/

<»  What are the tasks which have o be performed to achieve a certain goal ?

R/

< How do these tasks depend on each other?
In which order should the work be done ?

< Who should perform these tasks ?

A Workflow System is a computer application which coordinates the work, given

R/

< the workflow description

/7

“» the actual work to be done

/

*» the actual resources available




2. How do existing Work Flow Systems look like?

®  Common characteristics of Commercial Workflow Systems

/
0’0

0

o0

Semantics based on (simple) Petri Nets
Workflows are commonly graphically defined: flow graphs

Workflow specification abstracts from concrete work and resources
Databases are used to store the actual work and progress made

> 25 "Workflow Patterns” identified (Van der Aalst et al.)

sequencing, repetition, exclusive choice,
multiple choice,
parallel or, parallel or, ...

Descriptions are un-typed

Descriptions are static




3.

Approach

Initiative from industry: why not apply technigues known from Functional Languages?
< Dutch Applied Science (STW) project: "Demand Driven Workflows"
< is our first "simple" try out




3.

Approach

Initiative from industry: why not apply technigues known from Functional Languages?
% Dutch Applied Science (STW) project: "Demand Driven Workflows"
< is our first "simple" try out

We offer a//"standard" Workflow Patterns as combinator functions

J/

< Sequencing of tasks, repetition, exclusive choice, multiple choice, ...




3.

Approach

Initiative from industry: why not apply technigues known from Functional Languages?
% Dutch Applied Science (STW) project: "Demand Driven Workflows"

J/

< is our first "simple" try out

We offer a//"standard" Workflow Patterns as combinator functions

J/

< Sequencing of tasks, repetition, exclusive choice, multiple choice, ...

Typical features known from functional languages like Haskell and Clean
< Strongly typed, dynamically constructed, compositional, re-usable




3.

Approach

Initiative from industry: why not apply technigues known from Functional Languages?
% Dutch Applied Science (STW) project: "Demand Driven Workflows"
< is our first "simple" try out

We offer a//"standard" Workflow Patterns as combinator functions

J/

< Sequencing of tasks, repetition, exclusive choice, multiple choice, ...

Typical features known from functional languages like Haskell and Clean
< Strongly typed, dynamically constructed, compositional, re-usable

New useful workflow patterns

/

< Higher order tasks, Processes, Exception Handling, ...




3.

Approach

Initiative from industry: why not apply technigues known from Functional Languages?

% Dutch Applied Science (STW) project: "Demand Driven Workflows"
< is our first "simple" try out

We offer all "standard" Workflow Patterns as combinator functions

/

< Sequencing of tasks, repetition, exclusive choice, multiple choice, ...

Typical features known from functional languages like Haskell and Clean
< Strongly typed, dynamically constructed, compositional, re-usable

New useful workflow patterns

R/

<+ Higher order tasks, Processes, Exception Handling, ...

Executable workflow specification using standard web browsers

< All low level I/O handled automatically using generic programming techniques
Storage and retrieval of information, web I/O handling

< Declarative style of programming
Complexity of underlying architecture hidden

< One single application running distributed on server and clients




A very small *complete* example I

module exercisel

import StdEnv, StdiTasks

Start world = singleUserTask [ ] simple world

File  Edit Wiew Higtory Bookmarks Tools  Help

simple :: Task Int
simple = editTask "Done" createDefault " Refresh |

10



A very small *complete* example IT

module exercisel

import StdEnv, StdiTasks

Start world = singleUserTask [ ] simple world

File  Edit Wiew Higtory Bookmarks Tools  Help

simple :: Task (Int, Real)
simple = editTask "Done" createDefault " Refresh |

11



A very small *complete™ example ITI

simple :: Task [Int]
simple = editTask "Done" createDefault

File Edit Wiew Higtory Bookmarks Tools  Help

| http:jflocalhostiexercisel

12



A very small *complete™ example IV

:: Person = { firstName ;1 String
, surName i+ String
, dateOfBirth :: HtmlIDate
, gender :: Gender
}
. Gender = Male
| Female

:: Task Person
simple = editTask "Done" createDefault

13



A very small *complete* example IV

:: Person = { firstName ;1 String
, surName i+ String
, dateOfBirth :: HtmlIDate
, gender :: Gender
}
. Gender = Male
| Female

simple :: Task Person
simple = editTask "Done" createDefault

S0me
one

Female

14



editTask

editTask :: Stringa — Task a

edit TaskPred ::a (a > (Bool, HtmICode)) — Task a

it Task a == *TSt — *(a, *TSt) // a Task is state transition function
;: TSt // an abstract type

A task consist of an amount of work to be performed by the user involving > O interactions
It is either not active, active, or finished.

15



editTask

editTask :: Stringa — Task a

edit TaskPred ::a (a > (Bool, HtmICode)) — Task a

it Task a == *TSt — *(a, *TSt) // a Task is state transition function
;: TSt // an abstract type

A task consist of an amount of work to be performed by the user involving > O interactions
It is either not active, active, or finished.
is a context restriction for type a
In Haskell one would write:
editTask :: String > a — Task a

- In Clean it is used not only to demand instances of overloaded functions for type a
- But it can also be used to demand instances of generic functions...

16



generic functions used by i-Task system

class a | gForm {|*}, , , a
class a | , a

class a | gUpd {|*|} a

class a | gPrint {|*|} a

class a | gParse {|*|}a

class a | gerda {|*|}, read {|*|}, write {|*|}, TCa

It requires the instantiation of several generic functions for type "a" e.qg.
gForm gUpd html form creation / form handling

Serialization / De-Serialization for storage

gParse gPrint parsing / printing (in TxtFile, Page, Session)
gerda storage and retrieval (in Database),

read write efficient binary reading / writing (in DataFile)
TC conversion to and from Dynamics

option used to store functions

all generic functions can, on request, automatically be derived by the compiler

17



A very small *complete* example IV

:: Person = { firstName ;1 String
, surName i+ String
, dateOfBirth :: HtmlIDate
, gender :: Gender
}
. Gender = Male
| Female

simple :: Task Person

simple = editTask "Done" createDefault
derive gForm Person, Gender
derive gUpd Person, Gender
derive gParse Person, Gender
derive gPrint Person, Gender

S0me

one

derive gerda Person, Gender
derive read Person, Gender Fernale
derive write Person, Gender

18



Options

A task or any combination of tasks, can have several options:

class (««@) infix| 3 b :: (Task a) b » Task a

instance «@

. Lifespan

:: StorageFormat

:: Mode

:: GarbageCollect

Lifespan
) StorageFormat
, Mode

) GarbageCollect

= TxtFile | DataFile | Database
| Session | Page

| Temp

= StaticDynamic

| PlainString

= Edit | Submit

| Display

| NoForm

= Collect | NoCollect

// default: Session

// default: PlainString
// default: Edit

// default: Collect

// persistent state stored on Server
// temp state stored in browser

// temp state in application

// to store functions

// to store data

// editable

// non-editable

// not visible, used to store data

// off: used for debugging & logging

19



A very small *complete* example IV

simple :: Task Person
simple = editTask "Done" createDefault

By default any change made in a form is transmitted fo the clean application
Pressing "Done" means: task is finished

Yiew  History Bookmarks  Tools  Help

Female

20



A very small *complete™ example IV Submit

simple :: Task Person
simple = editTask "Done" createDefault <«@ Submit

Common behaviour: form is submitted when Submit is pressed, yet task not finished
Pressing "Done" means: task is finished

File Edit View History Bookmarks Tools  Help

| Submit || Clear |

| Done |

21



A very small *complete* example IV, Submit, TxtFile

simple :: Task Person
simple = editTask "Done" createDefault ««@ Submit ««@ TxtFile

Task(s) becomes persistent: status of the (partially evaluated) task is remembered
Important for multi-user applications.

File Edit View History Bookmarks Tools  Help

| Submit || Clear |

| Done |

29



A very small *complete™ example IV, Submit, Database

simple :: Task Person
simple = editTask "Done" createDefault ««@ Submit ««@ Database

Task(s) becomes persistent, now stored in relational database
Important for multi-user applications.
Options switched by toggling flags

File Edit View History Bookmarks Tools  Help

http: /flocalhostfexercise2

| Submit || Clear |

| Done |

23



Some predefined combinators...

Sequencing of tasks: monads
(=>>) infix 1 :: (Task a) (a = Task b) — Task b
return_V i a — Task a

Assign a task to a user, every user has a unique id (UserId :== Int)
(@::) infix 3 1 UserId (Task a) — Task a

Select 1 task to do out of n:
chooseTask :: [(String, Task a)] — Task a

Or Task: do both tasks concurrently in any order, finish as soon as one of them completes
(-1]-) infixr 3:: (Task a) (Task a) — Task a

Repeat forever:
foreverTask :: (Task a) — Task a

Prompting operator: displays Html text as long as a task is activated:
(?>>) infix 5 :: HtmlCode (Task a) — Task a

24



Assignhing Tasks to Users

£ Mozilla

Li

File Edit Wew History Bookmarks Tools  Help

- http:/flacalhost/pptexamp

| Fefresh |
| ShowTrace |

File Edit View History Bookmarks Tools Help

- http: flocalhost/pptesan

File Edit Wiew History Bookmarks Tools  Help

http: /flacalhost/pptexamples

2 v (1

Female




Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

:: UserId (Task a) - Task a
delegate boss task
= boss @:: [Txt "Who has to do the job ?"]
?>> editTask "OK" createDefault

76



Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

:: UserId (Task a) - Task a
delegate boss task
= boss @:: [Txt "Who has to do the job ?"]
?>> editTask "OK" createDefault
=>> \employee — employee @:: task

27



Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

:: UserId (Task a) - Task a
delegate boss task
= boss @:: [Txt "Who has to do the job ?"]
?>> editTask "OK" createDefault
=>> \employee — employee @:: task
=>> \result — boss @:: [Txt "Result:", toHtmI result]
?>> editTask "OK" Void




Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

.. UserId (Task a) > Task a

delegate boss task
= boss @:: [Txt "Who has to do the job ?"]
?>> editTask "OK" createDefault

=>> \employee — employee @:: task

=>> \result — boss @:: [Txt "Result:", toHtml result]
?>> editTask "OK" Void

=>> \_ - return_V result

Start world = multiUserTask [ ] (delegate O some_nice_task) world

20



Different ways to start a workflow application...

definition module iTasksHandler

singleUserTask  :: [StartUpOptions] (Task a) *World — *World

multiUserTask ;i [StartUpOptions] (Task a) *World — *World

workFlowTask :: [StartUpOptions] (LoginTask a) (TaskForUser a b)
*World - *World

:: LoginTask a :== Task ((Bool, UserId), a)

.: TaskForUser a b :== UserId a — LabeledTask b

30



Semantics I - Types

:» ITask

:: Done
:: Val

+ ID
. Event
:» TasksToDo

={val :Val
,ident 1 ID
,done :: Done
}

= Yes | No

= Int Int

| Tuple (Val, Val)

:== Int

:== ITask

== [ ITask ]

:: ITaskComb = Editor ITask

| Sequence ITaskComb (Val -> ITaskComb)

| Return Val

| Or ITaskComb ITaskComb
| And ITaskComb ITaskComb

// editor, input device

// sequence, monadic bind

// normal form, monadic returh
// or combinator

// and combinator

31



Semantics IT - Reduction Rules

Normal Form:

inNF :: ITaskComb — Bool
inNF (Return val) = True
inNF _ = False

One Step Reduction + Determining Active Editors for the next Reduction Step
Reduce :: ITaskComb (Maybe Event) TasksToDo — (ITaskComb, TasksToDo)
Reduce (Editor itask) Nothing todo = (Editor itask, [itask : fodo])

Reduce (Editor itask) (Just event) todo
| event.ident == itask.ident

| isFinished event.done = (Return event.val, todo)

| otherwise = (Editor event, [event : todo])
| otherwise = (Editor itask, [itask : todo])
where

isFinished :: Done — Bool
isFinished Yes = True
isFinished No = False

ey



Basic Implementation Scheme: Task Tree Reconstruction

"  Flow is specified in one Clean application serving a//users

B Ani-Task specification reads like a book

< because it gives the //lusion that it step-by-step interacts with the user
like standard IO for a desktop application

<+ In realityit starts from scratch every time information is committed, and dies

< It reconstructs the Task Tree, starting from the root
finds previous evaluation point

7
0’0

It deals with Multiple Users
Sequential handling of requests: users are served one-by-one

< It determines the resulting html code for a//users
but it shows only the html code intended for a specific user

< It stores state information in the html page, databases, files for the next request
Depending on the task options chosen

33



Optimization I: Global Task Rewriting

Can this be efficient?

% Over time, more and more tasks are created
“» the reconstruction of the Task Tree will take more and more time as well

Speed-up re-construction of the Task Tree: Global Task Rewriting

<+ Tasks are rewritten in (persistent) storages just like functions
The result of a task is remembered, not how a task accomplished

J/

<+ Tail recursion / repetition is translated to a Loop
Task Tree will not grow infinitely

/

< Garbage collection of stored iTasks which are not needed anymore

The efficiency is not bad at all, but for large systems we can do better

4



Optimization II: Local Task Rewriting - Basic idea

"  Local Task Rewriting

X/

< Avoid complete Task Tree reconstruction all the way from the root

X/

<+ Only locally rewrite the different tasks (sub tree) a user is working on

/

< Use "Ajax" technology and only update on web page what has to change

"  Transparent: (almost) no changes in the original workflow specification

J/

< Each tasks assigned to a user with the @:: combinator is rewritten “locally”

R/

< Fine grain control: any i-Task can assigned to be rewritten “locally”

UseA jax any_task_expression




Optimization II: Local Task Rewriting - Implementation

: any Sub-Tree in the Task Tree can be reconstructed from scratch

Thread Storage: to store closures: an iTask combinator call + its arguments

/

“» stored closure serves as kind of call-back function or thread
which can handle a//events of a// subtasks in the subtree

Global Effects Storage for every user

/

< locally one cannot detect global/effects

/

< administrate which tasks are deleted, the fact that new tasks are assigned

Rewrite-o-matic: from Loca/ Task Rewriting stepwise to &/obal Task Rewriting
<+ Threads can be nested, and can partly overlap

when a thread is finished locally rewrite parent thread, and so on...
< Switch back to top level Global Task Rewriting

when parent thread belongs to another user

when there are global effects administrated affecting the user

26



Example: Check and Double-Check

Check 1: by predicate Check 2: by application user

5
=

Eile  Edit  Wiew History Bookmarks  Tools  Help File  Edit  Wiew History Bookmarks Tools  Help

- http: /flocalhostf ajaxdemno | _ - http: /{localbostfajaxdemo

TWGids.nl | TWGids.nl

Refresh | ShowTrace | | Refresh | ShowTrace |

IMain Tasks: Main Tasks:

rinus
cs.runl
26 10

| Submit || Clear |

One can imagine that this is all done on the Client side




Check and Double-Check i- Task Specification

General Recipe to check and double-check the correctness of any value of any type...

doubleCheckForm :: a (a —» (Bool, [BodyTag])) — Taska
doubleCheckForm a preda
= [Txt "Please fill in the form:"]

?>> editTaskPred a preda

=>> \na = [Txt "Received information:", toHtml na, Txt "Is everything correct ?"]
?>> chooseTask [ ("Yes", return_V na)

, ("No", doubleCheckForm na preda)
]

doubleCheckPerson :: Person — Task Person
doubleCheckPerson = doubleCheckForm createDefault checkPerson
where checkPerson person = ...

example = doubleCheckPerson createDefault

38



Delegate: assigning tasks to users

it Task Person
example = foreverTask delegate

delegate
= [Txt "Define new initial form:"]
?>> editTask "onServer" createDefault

=>>\fi > [Txt "Assign first worker:"]
?>> editTask "Assign" 1

=>>\wl >  [Txt "Assign second worker:"]
?>> editTask "Assign" 2

=>>\w2 -  fillform wl fi -||- fillform w2 fi

=>> \fr > [Txt "resulting form received from fastest worker:", toHtml fr]
?>> editTask "OK" Void
where
fillform w f = w @:: doubleCheckPerson f

390



Delegate - Task Tree Snapshot

40



Delegate using Ajax

example :: Task Person
example = foreverTask delegate

delegate

=>> \fl —>

=>>\wl >

[Txt "Define new initial form:"]
?2>> editTask "onServer" createDefault

[Txt "Assign first worker:"]
?>> editTask "Assign" 1

[Txt "Assign second worker:"]
?>> editTask "Assign" 2

fillform wl fi -||- fillform w2 fi

[Txt “resulting form received from fastest worker:", toHtml| fr]
?>> editTask "OK" Void

41



Delegate Ajax - Task Tree Snapshot

42



Optimization II1: Client Side Local Task Rewriting

"  Even better to avoid web traffic overhead: Client Side Local Task Rewriting

®  Transparent: (almost) no changes in the original workflow specification
<+ In the workflow specification, any i-Task can be turned into a Client Thread

OnClient any_task_expression

43



Delegate using Sap/ & Ajax

example :: Task Person
example = foreverTask delegate

delegate

=>> \fl -

=>> \wl >

=>>\w2 -
=>> \fr -

where
fillformw f =

[Txt "Define new initial form:"]
?>> editTask "onServer" createDefault

[Txt "Assign first worker:"]
?>> editTask "Assign" 1

[Txt "Assign second worker:"]
?>> editTask "Assign" 2

fillform wl fi -||- fillform w2 fi

[Txt “resulting form received from fastest worker:", foHtml fr]
?>> editTask "OK" Void

. OnClient doubleCheckPerson f l

44



Optimization II1: Client Side Local Task Rewriting

The whole i- Task machinery has to run in the browser as wel/

We use Jan-Martin Jansen's SAPL interpreter: fastest, small, in C & Java (TFP '06)

The whole Clean iTask application is compiled to SAPL code
“simple” iTask: > 7000 functions, functions can be large (> 20.000 chars)

The SAPL interpreter + SAPL iTask code is loaded as Java Applet in the web page
2 almostidentical iTask images: Clean .exe on server, SAPL code on Client

A Clean function call can be translated to an equivalent SAPL function call

When a Client thread is created (SAPL), a Server thread is made as well (Clean)

We can choose where to evaluate: Client or Server
If it cannot be done on the Client, we can do it on the Server

45



Optimization II1: Client Side Local Task Rewriting

When an event occurs, we know it's prime destination: Client or Server

/

<+ The Client basically performs the same actions as the Server
but it cannot deal with

global effects
persistent storage handling (access to files, databases)
parent threads from other users
threads to be evaluated on server
new threads created for other users
% Rewrite-o-matic
in case of panic the Client evaluation stops
switch back to Server Side Local Task Rewriting

46



Conclusions

Advantages over Commercial Systems

/
0’0

0

L)

K/ X/ K/ K/
0.0 0‘0 0.0 0’0

J/ K/ X/ K/
0’0 0’0 0‘0 0.0

J
0’0

Executable specification, but not yet as declarative as envisioned

Workflows are dynamically constructed
Flow can depend on the actual contents
Workflows are statically typed, input type checked as well
Highly reusable code: polymorphic, overloaded, generic
Fully compositional
Higher order: resulting work can be a workflow -> shift work to someone else

It generates a multi-user web enabled workflow system
Runs on client or server, as demanded

One application => easier to reason
Technical very interesting architecture, general applicable
Distributed Database, operating system, not only for web applications

Intuitive for functional programmers
but probably not for other programmers ???

47



Lots of work to do...

More Real Life Examples needed:
<+ Car Damage Subrogation System (IFL 2007, Erik Zuurbier)
<+ Conference Management System (AFP 2008 Summerschool)
< Planned:

Logistic Control System (Dutch Navy)

Crisis Management System (Navy, Ministry of National Affairs)

Improve Practical Application
< Robustness ? Performance ? Scaling ? Security ? Software evolution ?
< Embedding with existing databases, workflow systems, main stream web tools
< Improve implementation:
% Controlling parallel applications
< Distributed Servers
< Exploit flexibility and total overview:
< Improve feedback and control given to the manager: adjust a running system

<+ Powerful editors on Client: full text editors, drawing of pictures, etc.

Theoretical foundation
Semantics ? Soundness ?

Can we define a declarative system on top of it ?

48



	Ajax and Client-Side Evaluation ��of��i-Tasks��Workflow Specifications
	Clean
	1. What is a Workflow System?
	2. How do existing Work Flow Systems look like?
	3. i -Tasks Approach
	3. i -Tasks Approach
	3. i -Tasks Approach
	3. i -Tasks Approach
	3. i -Tasks Approach
	A very small *complete* example I
	A very small *complete* example II
	A very small *complete* example III
	A very small *complete* example IV
	A very small *complete* example IV
	editTask
	editTask
	generic functions used by i-Task system
	A very small *complete* example IV
	Options
	A very small *complete* example IV
	A very small *complete* example IV Submit
	A very small *complete* example IV, Submit, TxtFile
	A very small *complete* example IV, Submit, Database
	Some predefined combinators…
	Assigning Tasks to Users
	Assigning Tasks to Users
	Assigning Tasks to Users
	Assigning Tasks to Users
	Assigning Tasks to Users
	Different ways to start a workflow application… 
	Semantics I - Types
	Semantics II – Reduction Rules
	Basic Implementation Scheme: Task Tree Reconstruction
	Optimization I: Global Task Rewriting
	Optimization II: Local Task Rewriting – Basic idea
	Optimization II: Local Task Rewriting - Implementation
	Example: Check and Double-Check
	Check and Double-Check i-Task Specification
	Delegate: assigning tasks to users
	Delegate – Task Tree Snapshot
	Delegate using Ajax
	Delegate Ajax – Task Tree Snapshot
	Optimization III: Client Side Local Task Rewriting
	Delegate using Sapl & Ajax
	Optimization III: Client Side Local Task Rewriting
	Optimization III: Client Side Local Task Rewriting
	Conclusions
	Lots of work to do…

