
1 / 17

A Programming Problem

Robert Harper
Carnegie Mellon University

IFIP WG2.8 June 2008

Problem Description

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

2 / 17

Gödel’s T

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

3 / 17

Types:

τ ::= nat naturals

| τ1 → τ2 functions

Expressions:

e ::= x variable

| z zero

| s(e) successor

| rec[τ](e; e0; x.y.e1) recursor

| λ(x:τ. e) lambda

| e1(e2) application

Judgements:

Γ ⊢ e : τ Typing Judgement

Γ ⊢ e1 ≡ e2 : τ Maximal Consistent Congruence

Definability in T

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

4 / 17

A function F : N → N is definable in T iff there exists a term eF of

type nat → nat such that F (m) = n iff eF(m) ≡ n.

Theorem 1 (Gödel). The functions definable in T are those provable

total in HA.

Proof. Normalization proof is formalizable in HA. Totality proofs in

HA can be erased to terms in T.

Using Gödel-numbering and diagonalization one may exhibit a

function that is not definable in T.

An Undefinable Function

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

5 / 17

For an expression e of T, let peq ∈ N be the Gödel-number of e.

Let the function E : N → N be such that if e is a closed term of type

nat → nat, then E(peq) = n iff e(peq) ≡ n.

Theorem 2. The function E is not definable in T.

Proof. Suppose eE defines E, and let

eD = λ(x:nat. s(eE(x))). We have

eD(peDq) ≡ s(eE(peDq)) (1)

≡ s(eD(peDq)). (2)

This contradicts consistency of equivalence in T.

An Undefinable Function

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

5 / 17

For an expression e of T, let peq ∈ N be the Gödel-number of e.

Let the function E : N → N be such that if e is a closed term of type

nat → nat, then E(peq) = n iff e(peq) ≡ n.

Theorem 4. The function E is not definable in T.

Proof. Suppose eE defines E, and let

eD = λ(x:nat. s(eE(x))). We have

eD(peDq) ≡ s(eE(peDq)) (1)

≡ s(eD(peDq)). (2)

This contradicts consistency of equivalence in T.

Corollary 5. The function E is not provably total in HA.

Definability in F

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

6 / 17

Theorem 6. The function E is provably total in HA2.

Proof. Essentially, can comprehend all possible computability

predicates in order to account for all possible programs.

Definability in F

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

6 / 17

Theorem 9. The function E is provably total in HA2.

Proof. Essentially, can comprehend all possible computability

predicates in order to account for all possible programs.

Theorem 10 (Girard). A function on the natural numbers is definable

in System F iff it is provably total in HA2.

Corollary 11. The function E is definable in System F.

Definability in F

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

6 / 17

Theorem 12. The function E is provably total in HA2.

Proof. Essentially, can comprehend all possible computability

predicates in order to account for all possible programs.

Theorem 13 (Girard). A function on the natural numbers is definable

in System F iff it is provably total in HA2.

Corollary 14. The function E is definable in System F.

This raises an interesting programming problem

The Problem

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

7 / 17

Give an explicit definition of the function E in System F.

In other words, define an evaluator for Gödel’s T in Girard’s F.

This seems to be a hard problem!

1. The evaluator must be manifestly total, in accordance with

Girard’s Theorem.

2. The implicit proof of its totality must encompass all possible
proofs of termination formalizable in (first-order) HA.

Some Guidelines

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

8 / 17

You may use any sort of term representation you’d like, as long as it’s

obvious that it can be Church-encoded. That is, you are permitted to

use inductively defined types in F.

Some Guidelines

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

8 / 17

You may use any sort of term representation you’d like, as long as it’s

obvious that it can be Church-encoded. That is, you are permitted to

use inductively defined types in F.

You may use a lexicographic extension of structural induction to any

finite number of places. That is, may use a nested structural

induction in which the outer induction dominates the inner induction.

Some Guidelines

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

8 / 17

You may use any sort of term representation you’d like, as long as it’s

obvious that it can be Church-encoded. That is, you are permitted to

use inductively defined types in F.

You may use a lexicographic extension of structural induction to any

finite number of places. That is, may use a nested structural

induction in which the outer induction dominates the inner induction.

Any characterization of equivalence in T sufficient for definability of

computations of type nat is acceptable. You need not prove that it is

the maximal consistent congruence.

Partial Credit

Problem Description

• Gödel’s T

• Definability in T
• An Undefinable
Function

• Definability in F

• The Problem

• Some Guidelines

• Partial Credit

Sketch of Solution

9 / 17

Partial credit will be awarded for solutions to any of these problems:

1. Show that E is definable in Agda or Coq , using dependent

types and large eliminations to define families of types indexed

by an inductive type.

2. Show that the analogue of E for simply typed λ-calculus with
Booleans is definable in System F.

The first may or may not be “on track” for a full-credit solution, but the

second definitely is.

Sketch of Solution

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

10 / 17

Contributed Solutions

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

11 / 17

Stephanie, Koen, and Lennart contributed similar solutions to the

problem as stated, using Coq, Haskell, and Agda, respectively.

• Interpret T types as Coq/Haskell/Agda types.

• Adequate for nat, and hence for defining E as specified.

These appear to be definable in F, if pressed.

Contributed Solutions

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

11 / 17

Stephanie, Koen, and Lennart contributed similar solutions to the

problem as stated, using Coq, Haskell, and Agda, respectively.

• Interpret T types as Coq/Haskell/Agda types.

• Adequate for nat, and hence for defining E as specified.

These appear to be definable in F, if pressed.

Congratulations on clean solutions to the stated problem!

Contributed Solutions

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

11 / 17

Stephanie, Koen, and Lennart contributed similar solutions to the

problem as stated, using Coq, Haskell, and Agda, respectively.

• Interpret T types as Coq/Haskell/Agda types.

• Adequate for nat, and hence for defining E as specified.

These appear to be definable in F, if pressed.

Congratulations on clean solutions to the stated problem!

But I had a little more in mind, despite what I in fact asked . . .

• Compute canonical forms at all types (numerals at nat).

• Equivalence is characterized as having the same canonical form.

Solution in Agda

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

12 / 17

Represent the standard logical relations argument as a dependently

typed functional program.

E ∈
∏

G : Ctx.
∏

t : Tp.
∏

e : Tm.

G ⊢ e : t −→ Comp∗[G](γ) −→ Comp[t](γ̂(e)).

Makes use of inductive definitions of types and families:

1. Syntax: Tp, Tm, Ctx.

2. Typing judgement G ⊢ e : t.

3. Computability predicates: Comp[t](e) and Comp∗[G](γ).

Agda neatly and conveniently supports writing this code!

Solution in Agda

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

12 / 17

Represent the standard logical relations argument as a dependently

typed functional program.

E ∈
∏

G : Ctx.
∏

t : Tp.
∏

e : Tm.

G ⊢ e : t −→ Comp∗[G](γ) −→ Comp[t](γ̂(e)).

Makes use of inductive definitions of types and families:

1. Syntax: Tp, Tm, Ctx.

2. Typing judgement G ⊢ e : t.

3. Computability predicates: Comp[t](e) and Comp∗[G](γ).

Agda neatly and conveniently supports writing this code!

But it’s not in System F, nor is it obvious how to transform it into

System F.

Solution in F

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

13 / 17

A strategy that works:

1. Translate T into Tω , an infinitary version of T.

2. Define Eω for Tω .
3. Obtain E by composing Eω with translation.

Why this helps:

1. Translation takes care of the termination proofs once and for all

so that the evaluator need not be concerned with them.

2. It is easy to define conversion to canonical forms for Tω (no

harder than for Booleans).
3. Key Lemma: structural cut elimination, aka hereditary

substitution.

Infinitary T

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

14 / 17

The ω-rule for arithmetic as an alternative to induction:

A(0) true A(1) true A(2) true . . .

x ∈ nat ⊢ A(x) true

Premise is an infinite sequence of proofs.

Define Tω similarly:

φ(0) : τ φ(1) : τ φ(2) : τ . . .

x : nat ⊢ case x of φ : τ

Here φ is an infinite sequence of terms and we have

case n of φ ≡ φ(n) (n ∈ N)

Infinitary T

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

14 / 17

The ω-rule for arithmetic as an alternative to induction:

A(0) true A(1) true A(2) true . . .

x ∈ nat ⊢ A(x) true

Premise is an infinite sequence of proofs.

Define Tω similarly:

φ(0) : τ φ(1) : τ φ(2) : τ . . .

x : nat ⊢ case x of φ : τ

Here φ is an infinite sequence of terms and we have

case n of φ ≡ φ(n) (n ∈ N)

But wait! What sort of thing is φ?

It is a meta-function in the ambient meta-theory

Translating T to T ω

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

15 / 17

Replace all occurrences of rec[τ](e; e0; x.y.e1) by case e of φ,

where

φ(0) = e∗0

φ(n + 1) = let x be n and y be φ(n) in e∗1

The meta-function φ is defined by primitive recursion.

Translating T to T ω

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

15 / 17

Replace all occurrences of rec[τ](e; e0; x.y.e1) by case e of φ,

where

φ(0) = e∗0

φ(n + 1) = let x be n and y be φ(n) in e∗1

The meta-function φ is defined by primitive recursion.

Crucially, the function φ is representable in F.

1. Define types Tm, Tp, and Ctx using Church encodings. The

constructor case has type Tm → (Nat → Tm) → Tm, which is

properly inductive.
2. Define φ of type Nat → Tm, where Nat is the type of Church

numerals, as above.

So the syntax of Tω is representable in F as an inductive type.

Defining Eω

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

16 / 17

It is now straightforward to define Eω for Tω using only structural

induction on Tm.

1. Compute canonical (η-long, β-normal) and atomic (head

normal) forms for terms, guided by types.

2. No problem with commuting conversions, etc., because of the
meta-function representation.

For example, Eω(case e of φ) is defined by

1. Let n be Eω(e). (Canonize e, unquote to obtain n.)

2. Yield Eω(φ(n)). (Call φ(n), canonize result.)

Relies on hereditary substitution to maintain canonical form!

This is definable by lexicographic induction on structure of types and
terms.

It’s All Just Focusing!

Problem Description

Sketch of Solution

• Contributed Solutions

• Solution in Agda

• Solution in F

• Infinitary T

• Translating T to Tω

• Defining Eω

• It’s All Just Focusing!

17 / 17

The canonical form required is just the focused presentation of T.

1. E is essentially a proof of completeness of focusing!

2. Hereditary substitution is just the proof of cut elimination for

focused proofs.

See Licata, Zeilberger, Harper (LICS 2008 forthcoming) for full
details.

	Problem Description
	Gödel's T
	Definability in T
	An Undefinable Function
	Definability in F
	The Problem
	Some Guidelines
	Partial Credit

	Sketch of Solution
	Contributed Solutions
	Solution in Agda
	Solution in F
	Infinitary T
	Translating T to T
	Defining E
	It's All Just Focusing!

