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Security-oriented Languages

•  Manifest Security Project (NSF-0714649)
–  Penn: Benjamin Pierce, Stephanie Weirich
–  CMU: Karl Crary, Bob Harper, Frank Pfenning

•  CAREER: Language-based Distributed System 
Security (NSF-0311204)

Limin Jia,  Karl Mazurak, Jeff Vaughan, Jianzhou Zhao
Joey Schorr  and Luke Zarko
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Goal of the AURA project: 
•  Develop a security-oriented programming language that 

supports:
–  Proof-carrying Authorization�

[Appel & Felton] [Bauer et al.]
–  Strong information-flow properties �

(as in Jif [Myers et al.] , FlowCaml [Pottier & Simonet]) 

•  Why?
–  Declarative policies (for access control & information flow)
–  Auditing & logging: proofs of authorization are informative
–  Good theoretical foundations

•  In this talk: tour of AURA's 
–  Focus on the authorization and audit components
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Outline
• AURA's programming model

• Authorization logic
– Examples

• Programming in AURA
–  (Restricted) Dependent types 

• Status, future directions, conclusions



5 

AURA: Programming Model

•  AURA is a call-by-value type-safe functional programming language
•  As in Java, C#, etc. AURA provides an interface to the OS resources

–  disk, network, memory, …
•  AURA is intended to be used for writing security-critical components

system interface

application

AURA runtime system

 code   code 

I/O
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AURA: Authorization Policies

•  AURA security policies are expressed in an authorization logic
•  Applications can define their own policies
•  Language provides features for creating/manipulating proofs

system interface

application

AURA runtime system

 code   code   policy 

proof

I/O
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AURA: Authorization Policies

•  Proofs are first class and they can depend on data
•  Proof objects are capabilities needed to access resources protected by 

the runtime: AURA's type system ensures compliance
•  The runtime logs the proofs for later audit

system interface

application

AURA runtime system

 code   code   policy 

proof
data

I/O
log
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AURA: Principals and Keys

•  For distributed systems, AURA also manages private keys
•  Keys can create policy assertions sharable over the network
•  Connected to the policy by AURA's notion of principal

system interface

application

AURA runtime system

log

 code   code   policy 

proof
data

I/O
A

B

A B
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Evidence-based Audit
•  Connecting the contents of 

log entries to policy helps 
determine what to log.

log

 policy   code 
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Evidence-based Audit
•  Connecting the contents of 

log entries to policy helps 
determine what to log.

•  Proofs contain structure 
that can help 
administrators find flaws 
or misconfigurations in the 
policy.

log

 policy   code 
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Evidence-based Audit
•  Connecting the contents of 

log entries to policy helps 
determine what to log.

•  Proofs contain structure 
that can help 
administrators find flaws 
or misconfigurations in the 
policy.

•  Reduced TCB: Typed 
interface forces code to 
provide auditable 
evidence. 

log

 policy   code 
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Outline
• AURA's programming model

• Authorization logic
– Examples

• Programming in AURA
–  (Restricted) Dependent types 

• Status, future directions, conclusions
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AURA's Authorization Logic
• Policy propositions
ϕ ::=true 
 c
 A says ϕ
 α

   ϕ ∧ ϕ
 ϕ ∨ ϕ
 ϕ → ϕ
 ∀α. ϕ

•  Principals
       A,B,C … P,Q,R etc.

•  Constructive logic:
–  proofs are programs
–  easy integration with�

software

• Access control in a 
Core Calculus of 
Dependency�
                [Abadi: ICFP 2006]

Encoded using �
Π types and �

inductive datatypes.
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Example: File system authorization
•   P1: FS says (Owns A f1)
•   P2: FS says (Owns B f2)
•  …

•   OwnerControlsRead: �
FS says    ∀o,r,f. (Owns o f) → �

   (o says (MayRead r f)) → �
  (MayRead r f)

•  Might need to prove:    FS says (MayRead A f1)
•  What are "Owns" and "f1"?
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Decentralized Authorization 
•  Authorization policies require application-specific 

constants:
–  e.g.        "MayRead B f"    or    "Owns A f"
–  There is no "proof evidence" associated with these constants
–  Otherwise, it would be easy to forge authorization proofs

•  But, principal A should be able to create a proof of �
                            A says (MayRead B f)
–  No justification required -- this is a matter of policy, not fact!  

•  Decentralized implementation:
–  One proof that "A says T" is A's digital signature on a string "T"
–  written   sign(A, "T")
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Example Proof (1)
•   P1: FS says (Owns A f1)
•   OwnerControlsRead: �

FS says    ∀o,r,f. (Owns o f) → �
   (o says (MayRead r f)) → �
  (MayRead r f)

•  Direct authorization via FS's signature:�
   �

sign(FS, "MayRead A f1") �
 : FS says (MayRead A f1)



17 

Example Proof (2)
•   P1: FS says (Owns A f1)
•   OwnerControlsRead: �

FS says    ∀o,r,f. (Owns o f) → �
   (o says (MayRead r f)) → �
  (MayRead r f)

•  Complex proof constructed using "bind" and "return"�
 �

bind p = OwnerControlsRead in�
 bind q = P1 in�
     return FS (p A A f1 q sign(A,"MayRead A f1")))

     : FS says (MayRead A f1)
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Authority in AURA
• How to create the value sign(A, "ϕ") ?
•  Components of the software have authority

–  Authority modeled as possession of a private key
–  With A's authority : �

               say("ϕ")  evaluates to  sign(A, "ϕ")

• What ϕ's should a program be able to say? 
–  From a statically predetermined set (static auditing)
–  From a set determined at load time 

•  In any case: log which assertions are made



19 

Outline
• AURA's programming model

• Authorization logic
– Examples

• Programming in AURA
–  (Restricted) Dependent types 

• Status, future directions, conclusions
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Propositions: specify policy
ϕ               A says ϕ
(ϕ ∧ φ)  ∀α.T
(Owns A fh1)     (ϕ -> φ) 

Evidence: proofs/credentials
  sign(A, "ϕ")
    bind/return
     \x:t.e

AURA Programming Language

Types: describe programs
 int         FileHandle
 string prin
 int -> int pf  ϕ

Programs: computations, I/O
 3 fh1 
 "hello" A
 say(ϕ)         \x:t.e

Programs Policies

St
at

ic


D
yn

am
ic
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(Restricted) Dependent Types
•  Policy propositions can mention program data

–  E.g. "f1" is a file handle that can appear in a policy
–  AURA restricts dependency to first order data types
–  Disallows computation at the type level – only values!

•  Programming with dependent types:
   {x:T;     U(x)}      dependent pair*       (* syntactic sugar) �

(x:T) → U(x)      dependent functions

•  Invariant: sign only types
–  Computation can't depend on signatures
–  But, can use predicates:  {x:int; pf A says Good(x)}
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Auditing Interfaces
•  Type of the "native" read operation:
       raw_read :   FileHandle → String 

•  AURA's runtime exposes it this way:�
 read : (f:FileHandle) →  

    pf RT says (OkToRead self f) →  
    {ans:String; pf RT says (DidRead f ans)} 

•  RT is a principal that represents the AURA runtime
•  OKtoRead and DidRead are "generic" policies 

–  The application implements its own policies about when it is 
OKtoRead by providing assertions, etc.

–  Parts of the runtime must delegate to the application



Signatures
•  Assertions: uninhabited constants that construct Prop’s
assert MayRead : Prin -> FileHandle -> Prop; 
assert Owns : Prin -> FileHandle -> Prop;
•  AURA supports mutually recursive datatypes and

 mutually inductively defined propositions:
data List: Type -> Type { 

| nil : (t:Type) -> List t 
 | cons: (t:Type) -> t -> List t -> List t 

} 
data OwnerInfo : FileHandle -> Type { 
 | oinfo : (f:FileHandle) -> (p:Prin)  

             -> pf (self says (Owns p f)) -> OwnerInfo f 
} 
data And : Prop ->  Prop -> Prop { 
   | both : (p:Prop) -> (q:Prop) -> p -> q -> And p q 
} 
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More about Prop vs. Type
•  We want the Prop fragment to  be a logic:

–  Pure, strongly normalizing
–  Signature typing rules add a strong positivity constraint for Prop

 to rule out divergence

•  We need to separate the Prop and Type fragments
–  Type fragment includes divergent terms (possibly other effects)
–  This is the purpose of the “pf” monad.  A value of type “pf P” is of

 the form “returnp t”  where “t” is a pure proof term that proves P.
–  It is possible to write a loop of type “pf P” by not one of type “P”.
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Example Program
•  (see demo.core)
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Formalizing Core AURA
•  Lambda-cube-like representation with a very simple core:

t ::= x  |  ctr  |  λx:t1.t2  |  t1 t2  |  (x:t1) → t2  | �
       match t1 t2 with {b}   |   (t1 : t2)    | c

•  Plus these constants  (special typechecking rules):
c   ::= Type   |  Prop  | Kind�

    prin  |  says   | returns | binds

                self   | sign�
           pf  |   returnp | bindp

         if 
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Coq Formalization
•  Type system and operational semantics:

–  30 rules in 4 mutually inductive predicates: wf_env, wf_tm, 
wf_branches, wf_brn

–  Signature checking: wf_sig, wf_bundle_tcrs, wf_bundle_ctrs, 
wf_ctr_decls

–  Conversion relation (for casts) that reflects dynamic equality 
checks into the static type system

–  Evaluation rules
•  Correctness properties proved in Coq: 

–  Type soundness and decidability of typechecking  (~7000 loc)
–  Decidability of typechecking is simplified by:

•  Restricted dependency (only values)
•  Limited equality proofs available statically

•  Paper proof of strong normalization of (a slightly simplified
 version of) the Prop fragment.
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Observations about the Formalization
•  Dealing with mutually recursive datatypes and pattern

 matching was a lot of work
–  Significant source of complexity for soundness and decidability
–  … hopefully reusable in other contexts (our lambda cube plus

 constants can probably be instantiated to other languages)

•  Initial investment in formalization was heavy – many
 hours to implement the typing rules, etc.
–  But: having machine checked proofs is a big win, especially for

 large groups of collaborators.
–  It gets easier over time…

28 
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Open Questions

•  AURA needed improvements:    
–  Anonymous existential types / dependent type & inference
–  Richer dependent types?  
–  Explicit / richer equality proofs?
–  Revocation/expiration of signed objects?  [Garg and Pfenning]
–  Connection to program verification?
–  Correlate distributed logs?

•  This story seems just fine for integrity, but what about 
confidentiality?
–  We have many ideas about connecting to information-flow analysis
–  Is there an "encryption" analog to "signatures" interpretation? 
–  Encode confidentiality using “security monads” [work at Chalmers]



Conjecture: Non-security use?
•  Carve up a program into principals

–  Perhaps by module?
•  Allow principals to make arbitrary (dependent) logical

 assertions
–  Interfaces can specify constraints in this logic
–  (e.g. propositions regulate type equality)

•  The “says” modality offers an escape hatch: no need to
 construct an actual proof
–  Cast uses “asserted equality” (not “verifiable equality”)
–  “says” isolates components, allows assignment of blame and makes

 trust relationships explicit.
•  Question: is this interesting?  Useful? Does anyone know

 of any work similar to this?

30 
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Outline
• AURA's programming model

• Authorization logic
– Examples

• Programming in AURA
– Dependent types 

• Status, future directions, conclusions
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AURA's Status
•  Have implemented an interpreter in F#

–  Many small examples  programs 
–  Working on larger examples
–  Goal: experience with proof sizes, logging infrastructure

•  Planning to compile AURA to Microsoft .NET platform
–  Proof representation / compatibility with C# and other .NET 

languages
–  Luke Zarko is awesome

•  Penn undergrad applying this fall to Ph.D. programs for next year
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Security-oriented Languages

                           AURA
•  A language with support for authorization and audit
•  Authorization logic
•  Limited form of dependent types
•  Language features that support secure systems 

www.cis.upenn.edu/~stevez/sol
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Thanks!


