
Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

1 of 15 21/6/09 20:25

alas, poor

Conor McBride
(WG2.8 #26, Frauenchiemsee, 8-12 June 2009)

This slide is nearly ten years old. How times change!

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

2 of 15 21/6/09 20:25

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

3 of 15 21/6/09 20:25

This remains the central point of the case for dependent types.
In this talk, I consider validating containers with respect to
shape, syntax with respect to type, but most especially,
interaction with respect to circumstances.

We still need the revolution, but it seems less controversial these
days.

Do the types run off in terror?

No! They're overjoyed at their new articulacy.

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

4 of 15 21/6/09 20:25

Here's a picture of a list, seen as a recursive data structure.

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

5 of 15 21/6/09 20:25

They don't zip so well, some times.

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

6 of 15 21/6/09 20:25

But if each node makes clear what length it delivers and what
length subnode it is willing to accept,...

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

7 of 15 21/6/09 20:25

...zipping is always spot on.

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

8 of 15 21/6/09 20:25

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

9 of 15 21/6/09 20:25

It's sensible, and even becoming traditional, to abstract your
syntax over the type used to represent variables, pointing to the
functorial structure of renaming and the monadic structure of
substitution.

I'm just playing the same trick, with typed syntax. We're working
in slightly fancier (i.e., slice) categories, but the structure is the
same, so the code is the same. You'd expect that if your
renaming maps each variable to another of the same (base)
type, then deploying it will preserve the (arbitrary) type of any
term. And that's what you get, at no extra charge.

It may help to give a candidate for σ :: {Base}→*, representing
variables. A common choice is In {Γ}, where Γ :: [Base]
represents a context. This definition is at least a decade old —
Altenkirch and Reus used it exactly as this typed version of de
Bruijn indices in their CSL 1999 paper.

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

10 of 15 21/6/09 20:25

I should, of course, mention

instance IFunctor Tm where
 imap = rename

An IFunctor is, specifically, a monotone predicate transformer.

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

11 of 15 21/6/09 20:25

b or not b, that is the question:

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

12 of 15 21/6/09 20:25

Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,

Or to take arms against a sea of troubles

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

13 of 15 21/6/09 20:25

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

14 of 15 21/6/09 20:25

σ :→ φ τ = ∀j. σ{j} → τ{j}
 is the type of an arrow of outrageous fortune.

The world gets to choose what state we're in, but must provide
evidence that it satisfies the precondition σ.

This is by contrast with the “parameterised monads” of Atkey
and others.

class PMonad (ψ :: {ι} → * → {ι} → *) where
 preturn :: ∀ α, i. α → ψ {i} α {i}
 pbind :: ∀ α, β, i, j, k.
 ψ {i} α {j} →
 (α → ψ {j} β {k}) →
 ψ {i} β {k}

A PMonad does not permit outrageous fortune: in any call to
pbind, we fix the intermediate state {j} is fixed up front, and the
world must deliver it. PMonads thus give access to the
predictable fragment of effectful computation. Every IMonad
can be specialized to the PMonad of its predictable fragment by
using

data Eq :: {ι} → {ι} → * where
 Refl :: Eq {i} {i}

data K :: * → {ι} → * where
 K :: α → K α {i}

data (:∧:) :: ({ι} → *) → ({ι} → *) → {ι} → *
where
 (:&:) :: σ{i} → τ{i} → (σ:∧:τ){i}

newtype Predict φ i α j =
 Ensure (φ (Eq {j} :∧: K α) {i})

That is, Predict φ i α j is the type of φ computations starting
from state {i} which reach a state considered satisfactory if it
happens to be the state {j} we predicted (and if we have a value
in α, to boot).

Preconditions and postconditions for our file IO operations...

...uniformly determine the predicate transformer characterizing
one step of file IO.

Winging It file://localhost/Users/conor/Desktop/winging-jpgs/index.html

15 of 15 21/6/09 20:25

Any monotonic one-step transformer yields an IMonad exactly
by closure under skip and sequential composition.

Conor McBride 2009

