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Functional Programming
Haiku or Karate?




Motivation

Despite what you might suspect

Haskell programs are not yet always the
fastest and shortest

GHC is smart, but not sufficiently smart
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<shootout>
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What can we do about it?

 Still more optimizations
— Fusion (complexity changing!)
— Constructor specialization
— Domain-specific rewrite rules
* More and better parallelism
* Smarter runtime (constructor tag bits)
* Special purpose libraries
— Data.Bytestring, Data.Binary
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What about regular data types?

* Custom types and optimizations are great,
but lots of programs use standard
polymorphic data types

* Is there anything we can improve there?

* \We need a nice way to look at how data
structures are actually represented

galois
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A secret primop: unpackClosure#

unpackClosure# :: a — (# Addr#, Array# b, ByteArray# #)

* Added for the GHCi Debugger
* Can write lots of interesting things with it:

— sizeOfClosure ra— Int
— hasUnboxedFields :: a — Bool
— View . a — Graph

* Smuggling runtime reflection into Haskell
galois
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Everyday data types

<vacuum + cairo>
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data FingerTree a Hinze & Patterson's finger tree

= Empty
| Single a Data.Sequence.fromList [1..20]
| Deep !Int
! (Digit a)
(FingerTree (Node a))
! (Digit a)
Deep[20]
data Digit a
One a ///
Two a a
Deep[15] Four

|
| Three a a a
|

Four a a a a./ /// \\\ ‘// Qi?\\\
One Empty Four 20
Node3[3] Node3[3] Node3[3] Node3[3] Node3[3]

TN /T /\\ JAN /AN
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data RandomAccessList a
= RandomAccessList !Int [(Int, CBTree a)]

data CBTree a
= Leaf a
| Node a ! (CBTree a) ! (CBTree a)

RandomAccessList[10] _ _
Okasaki's random access list:

/ © \ Data.RandomAccessList.fromList [1..10]
(;) ()

7 I

Node () I
,////1// \\ l \\\\

1 Leaf Leaf 7 Node

| | P
2 3 )//Node\ Node\\
Leaf Leaf Leaf Leaf

| | | |
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Node
data STree a = Node [Edge a] \

| Leaf

type Edge a = (Prefix a, STree a) // '\\

newtype Prefix a = Prefix ([a], Length a) () ()

data Length a = Exactly !Int

| Sum !Int [a]
/
/////////// Leaf (,)
[\ /

\\//

Giegerich and Kurtz's Purely Functional Suffix Trees ‘a ()

Data.SuffixTree.construct “abab”
b’ I



Hey's AVL tree library

Data.Tree.AVL.asTreel [1..15]

data AVL e
(AVL e) e (AVL e)

(AVL e) e (AVL e) Z
(AVL e) e (AVL e)
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An Opportunity!

* Lots of parametrically polymorphic
container types in common use

* All with (slow!) uniform representation
data Maybe a = Nothing | Just a

* But we “"know” the type of 'a’ statically!
readInt :: ByteString — Maybe Int

* How much faster do things get if we could

specialize data types at each use!?
galois
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Challenge

Make parametrically polymorphic structures
as efficient as monomorphic ones, when
used at a known type

Remove the uniform representation penalty

galois
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Inspiration: Habit and DPH

 Data Parallel Haskell
— List-like interface

— Radical restructuring under the hood
(flattening)

* Habit: PSU/Galois “Systems Haskell”
— Per-constructor representation annotations

* Whole-program compilers (a la JHC)
— GHC Inliner is sort of there already...
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Goals: uniform improvements for

polymorphic containers

* Specialize polymorphic containers for
each element type

* Retain a user interface of regular
parametric polymorphism

— Libraries should be mostly unchanged

* Set up uniform rules for specialization
— Happy to sacrifice laziness for speed

* Open extn.: allow ad hoc repreSentaéiQ[%ﬁfs
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No more uniform representations!

()
/ \ Uniform list of pairs
/ (l) () \ [(xy) | x <« [1.3l,y < [1.X]]
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AFTER :)

ConsPairlntint[1,1]

|

ConsPairintint[2,1]

|

ConsPairlntint[2,2]

|

ConsPairlntint[3,1]

|

ConsPairlntInt[3,2]

|

ConsPairlntint[3,3]

|

EmptyPairlntint

Specialized [(Int,Int)]

fromList [ pairxy | x < [1..3], y «< [1..X] ]



Mechanism iIs here!

* Type classes
— Make decisions on a per-type basis
— Open
— Ad hoc
* Class-associated data types
— Per-instance actual data types

— Representation types added separately to
function on those types
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Self-optimizing tuples

{-# LANGUAGE TypeFamilies, MultiParamTypeClasses #-}

-- data (,) a b = (a, b)

class AdaptPair a b where

data Pair a b —- no representation yet
curry :: (Pair a b -=>c¢c) -> a -> b -> ¢

fst :: Pair a b -> a

snd :: Pair a b -> b

galois
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Functions on adaptive types

—-— uncurry :: (a -=> b -> c¢c) -> ((a, b) -> c)

—— uncurry £ p = £ (fst p) (snd p)

uncurry :: AdaptPair a b
=> (a => b -> c¢) -> (Pair a b -> c)

uncurry £f p = £ (fst p) (snd p)

pair :: AdaptPair a b
=> a -> b -> Pair a b
pair = curry id
galois
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Plugging in the representation type

instance AdaptPair Int Double where
-- We can use our unpacking tricks per type
data Pair Int Double
= PairIntDouble {-# UNPACK #-}!Int
{-# UNPACK #-}!Double
—- boilerplate views
fst (PairIntDouble a ) = a

snd (PairIntDouble b) = Db

curry £f x y = £ (PairIntDouble x y)
galois
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Non-uniform representations

()
o PairlntChar[10,120]

10 X'
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Joy

* Greater data density!

* More strictness info for common types
— More CPR possible!
— Should remove heap checks

* Interacts well with other optimizations
— Fusion

* Can use ad hoc representation decisions
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Careful... smart compiler wanted

* Don't want any dictionaries left over
— GHC already OK at removing them
* Will rely heavily on inlining
— Fake whole program compiler

* Need a lot of instances
— Increases compile times...

 Library functions as templates, not directly
reused (inlined, then specialized)

2008 Galois, Inc. All rights reserved.
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Creating instances

* Need instances for all combination of
common element types

— SYB generics to derive them

— Template Haskell now supports unpacking
pragmas and associated data types

* GHC gets a sore head when | enumerate
all element types as instances

galois
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class AdaptList a where

data List a

empty :: List a

cons :: a -> List a -> List a
null :: List a -> Bool

head :: List a -> a

tail :: List a -> List a

galois
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List functions

fromList :: AdaptList a => [a] -> List a
fromList [] = empty

fromList (xXx:Xs) = X cons fromList Xs

(++) :: AdaptList a

=> List a -> List a -> List a
(++) xXs ys

| null xs = ys

| otherwise = head xs “cons”~ tail xs ++ ys

galois
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List functions

map :: (AdaptList a, AdaptList b)

=> (a -> b) -> List a -> List b

map £ as = go as
where
go XS
| null xs = empty
| otherwise = £ (head xs) “cons™ go (tail xs)
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List instances

instance AdaptList Int where
data List Int
= EmptyInt
| ConsInt {-# UNPACK #-}!Int (List Int)

empty = EmptyInt

cons = ConsInt

null EmptyInt = True
null = False

head EmptyInt = errorEmptyList "head"
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Performance (preliminary)

* AdaptList a vs [a]
— Pipelines of list functions: 15 — 30% faster
— GC: 15 -40% less allocation
— More unboxing
* Need to be sure to have reliable dictionary
removal

galois
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Data.List.sum

sum :: (AdaptList a, Num a) => List a -> a

sum 1 = go 1 0
where

go xXs la

| null xs a

| otherwise = go (tail xs) (a + head xs)

galois
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Data.List.sum

Use at List Int type:

Swgo :: List Int -> Int# -> Int#
Swgo Xs n = case xs of
EmptyInt -> n

ConsInt x Xs -> Swgo xs (+# n Xx)

No unpacking. No views. No dictionaries.

Elements aready in unboxed form!
galois
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Trees and Sets

* Unpacking element types: obvious now

* Other ad hoc representation changes

— Coalescing nodes in trees
* Experiments: strong increase in density

— Non-representation of singletons
— Bools to bits

galois
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Non-uniform polymorphic containers

* So it is possible... generic approach to
faster polymorphic structures

— Can we do this automatically?
— Rules based on strictness information?

* CPR enabled, can we do it on sum types?

* Treats inliner as poor man's whole
program optimizer

* Nice: compiler extensions in the Ian%té@gg

2008 Galois, Inc. All rights reserved.



Where is all this?

* On Hackage
— cabal install vacuum-cairo
— cabal install adaptive-containers

* Other structures appearing (finger trees)
« BTW:

— cabal install fingertree
— cabal install random-access-list
— cabal install suffixtree

— cabal install avltree galois
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