IT

Improving Data Structures

Visualization and Specialization

Don Stewart | wg2.8 | 2009-06-09

Functional Programming
Haiku or Karate?

Motivation

Despite what you might suspect

Haskell programs are not yet always the
fastest and shortest

GHC is smart, but not sufficiently smart

galois

<shootout>

galois

2008 Galois, Inc. All rights reserved.

What can we do about it?

 Still more optimizations
— Fusion (complexity changing!)
— Constructor specialization
— Domain-specific rewrite rules
* More and better parallelism
* Smarter runtime (constructor tag bits)
* Special purpose libraries
— Data.Bytestring, Data.Binary

galois

2008 Galois, Inc. All rights reserved.

What about regular data types?

* Custom types and optimizations are great,
but lots of programs use standard
polymorphic data types

* Is there anything we can improve there?

* \We need a nice way to look at how data
structures are actually represented

galois

2008 Galois, Inc. All rights reserved.

A secret primop: unpackClosure#

unpackClosure# :: a — (# Addr#, Array# b, ByteArray# #)

* Added for the GHCi Debugger
* Can write lots of interesting things with it:

— sizeOfClosure ra— Int
— hasUnboxedFields :: a — Bool
— View . a — Graph

* Smuggling runtime reflection into Haskell
galois

2008 Galois, Inc. All rights reserved.

Everyday data types

<vacuum + cairo>

galois

2008 Galois, Inc. All rights reserved.

! Yﬂum Germany | English (0 &= ﬁl-

Home | Subscriptions | Videos | Channels

Vacuum + Ubigraph

dacuumLiol grapne v
VacuumLitl grapn= ¥1@
dacuumlitl grapn= vie
FACLUMUIDL g apis
Facuumiblgrapn= ¥le
YacuumDl graph=

» @ 1:11/1:43 «fi| | =0 €9
% % K KK 9 ratings 1,163 views

File Edit Wiew Layer Object Path Text Effects Whiteboard Help

Q@@ TEea & VTI% EN

CQ®s AR 9¢ BB

QS 09 L] LE L= 5 5T x[s20438[v[100760[2 wse7es [Z] @ (13782 [mx Affect ..
@I|I|I|||I|I|I|I|||I|I|I|I|||I|I|I|I|||I|I|I|I||1|5F|I|I|I||2|UU|I|I|I||2| |I|I|I||a: |I|I|I||3|EU|I|I|I||4|UU|I|I|I||4|50|I|IulnlﬁnnnnI|I|I||5|EU|I|I|I||E|UU|I|I|I||E|EU|I|I|I||?|UU|F
I

i Deep[10]
ﬁ o H-\--H"'-\.
nE wal]
@ -i One Deep[6] Three
@ 1 One Empty One 10
% | IJ:I
® = Node3([3 Node3[3] b
B 7
a | | B
e HE N I NN BN BN Bl .S
<] I I>]
git'r'é]ke: E;i 0:101: & @ | (oot 2 Shlﬂ: click to toggle select; drag for rubberband selection; Alt: click to select under; d. $ E; Sg Z:| 118% |-

data FingerTree a Hinze & Patterson's finger tree

= Empty
| Single a Data.Sequence.fromList [1..20]
| Deep !Int
! (Digit a)
(FingerTree (Node a))
! (Digit a)
Deep[20]
data Digit a
One a ///
Two a a
Deep[15] Four

|
| Three a a a
|

Four a a a a./ /// \\\ ‘// Qi?\\\
One Empty Four 20
Node3[3] Node3[3] Node3[3] Node3[3] Node3[3]

TN /T /\\ JAN /AN

8 9 10

data RandomAccessList a
= RandomAccessList !Int [(Int, CBTree a)]

data CBTree a
= Leaf a
| Node a ! (CBTree a) ! (CBTree a)

RandomAccessList[10] _ _
Okasaki's random access list:

/ © \ Data.RandomAccessList.fromList [1..10]
(;) ()

7 I

Node () I
,////1// \\ l \\\\

1 Leaf Leaf 7 Node

| | P
2 3)//Node\ Node\\
Leaf Leaf Leaf Leaf

| | | |

6 7 9 10

Node
data STree a = Node [Edge a] \

| Leaf

type Edge a = (Prefix a, STree a) // '\\

newtype Prefix a = Prefix ([a], Length a) () ()

data Length a = Exactly !Int

| Sum !Int [a]
/
/////////// Leaf (,)
[\ /

\\//

Giegerich and Kurtz's Purely Functional Suffix Trees ‘a ()

Data.SuffixTree.construct “abab”
b’ I

Hey's AVL tree library

Data.Tree.AVL.asTreel [1..15]

data AVL e
(AVL e) e (AVL e)

(AVL e) e (AVL e) Z
(AVL e) e (AVL e)

N2 M™

\
/2/\4 AN
SN // \

13 15

An Opportunity!

* Lots of parametrically polymorphic
container types in common use

* All with (slow!) uniform representation
data Maybe a = Nothing | Just a

* But we “"know” the type of 'a’ statically!
readInt :: ByteString — Maybe Int

* How much faster do things get if we could

specialize data types at each use!?
galois

2008 Galois, Inc. All rights reserved.

Challenge

Make parametrically polymorphic structures
as efficient as monomorphic ones, when
used at a known type

Remove the uniform representation penalty

galois

2008 Galois, Inc. All rights reserved.

Inspiration: Habit and DPH

 Data Parallel Haskell
— List-like interface

— Radical restructuring under the hood
(flattening)

* Habit: PSU/Galois “Systems Haskell”
— Per-constructor representation annotations

* Whole-program compilers (a la JHC)
— GHC Inliner is sort of there already...

2008 Galois, Inc. All rights reserved. g a

lois

Goals: uniform improvements for

polymorphic containers

* Specialize polymorphic containers for
each element type

* Retain a user interface of regular
parametric polymorphism

— Libraries should be mostly unchanged

* Set up uniform rules for specialization
— Happy to sacrifice laziness for speed

* Open extn.: allow ad hoc repreSentaéiQ[%ﬁfs

2008 Galois, Inc. All rights reserved.

No more uniform representations!

()
/ \ Uniform list of pairs
/ (l) () \ [(xy) | x <« [1.3l,y < [1.X]]
1 1 ®)
1 ®)

()

0
/ I
B E F O RE 2 () I
/ v

3 3

AFTER :)

ConsPairlntint[1,1]

|

ConsPairintint[2,1]

|

ConsPairlntint[2,2]

|

ConsPairlntint[3,1]

|

ConsPairlntInt[3,2]

|

ConsPairlntint[3,3]

|

EmptyPairlntint

Specialized [(Int,Int)]

fromList [pairxy | x < [1..3], y «< [1..X]]

Mechanism iIs here!

* Type classes
— Make decisions on a per-type basis
— Open
— Ad hoc
* Class-associated data types
— Per-instance actual data types

— Representation types added separately to
function on those types

2008 Galois, Inc. All rights reserved.

galois

Self-optimizing tuples

{-# LANGUAGE TypeFamilies, MultiParamTypeClasses #-}

-- data (,) a b = (a, b)

class AdaptPair a b where

data Pair a b —- no representation yet
curry :: (Pair a b -=>c¢c) -> a -> b -> ¢

fst :: Pair a b -> a

snd :: Pair a b -> b

galois

2008 Galois, Inc. All rights reserved.

Functions on adaptive types

—-— uncurry :: (a -=> b -> c¢c) -> ((a, b) -> c)

—— uncurry £ p = £ (fst p) (snd p)

uncurry :: AdaptPair a b
=> (a => b -> c¢) -> (Pair a b -> c)

uncurry £f p = £ (fst p) (snd p)

pair :: AdaptPair a b
=> a -> b -> Pair a b
pair = curry id
galois

2008 Galois, Inc. All rights reserved.

Plugging in the representation type

instance AdaptPair Int Double where
-- We can use our unpacking tricks per type
data Pair Int Double
= PairIntDouble {-# UNPACK #-}!Int
{-# UNPACK #-}!Double
—- boilerplate views
fst (PairIntDouble a) = a

snd (PairIntDouble b) = Db

curry £f x y = £ (PairIntDouble x y)
galois

2008 Galois, Inc. All rights reserved.

Non-uniform representations

()
o PairlntChar[10,120]

10 X'

galois

2008 Galois, Inc. All rights reserved.

Joy

* Greater data density!

* More strictness info for common types
— More CPR possible!
— Should remove heap checks

* Interacts well with other optimizations
— Fusion

* Can use ad hoc representation decisions

2008 Galois, Inc. All rights reserved. g a l O] S

Careful... smart compiler wanted

* Don't want any dictionaries left over
— GHC already OK at removing them
* Will rely heavily on inlining
— Fake whole program compiler

* Need a lot of instances
— Increases compile times...

 Library functions as templates, not directly
reused (inlined, then specialized)

2008 Galois, Inc. All rights reserved.

galois

Creating instances

* Need instances for all combination of
common element types

— SYB generics to derive them

— Template Haskell now supports unpacking
pragmas and associated data types

* GHC gets a sore head when | enumerate
all element types as instances

galois

2008 Galois, Inc. All rights reserved.

class AdaptList a where

data List a

empty :: List a

cons :: a -> List a -> List a
null :: List a -> Bool

head :: List a -> a

tail :: List a -> List a

galois

2008 Galois, Inc. All rights reserved.

List functions

fromList :: AdaptList a => [a] -> List a
fromList [] = empty

fromList (xXx:Xs) = X cons fromList Xs

(++) :: AdaptList a

=> List a -> List a -> List a
(++) xXs ys

| null xs = ys

| otherwise = head xs “cons”~ tail xs ++ ys

galois

2008 Galois, Inc. All rights reserved.

List functions

map :: (AdaptList a, AdaptList b)

=> (a -> b) -> List a -> List b

map £ as = go as
where
go XS
| null xs = empty
| otherwise = £ (head xs) “cons™ go (tail xs)

2008 Galois, Inc. All rights reserved. g a l O] S

List instances

instance AdaptList Int where
data List Int
= EmptyInt
| ConsInt {-# UNPACK #-}!Int (List Int)

empty = EmptyInt

cons = ConsInt

null EmptyInt = True
null = False

head EmptyInt = errorEmptyList "head"
2008 Galois, Incl}lﬁig ts(jréservgdcons I nt X) = X g a l O i S

Performance (preliminary)

* AdaptList a vs [a]
— Pipelines of list functions: 15 — 30% faster
— GC: 15 -40% less allocation
— More unboxing
* Need to be sure to have reliable dictionary
removal

galois

2008 Galois, Inc. All rights reserved.

Data.List.sum

sum :: (AdaptList a, Num a) => List a -> a

sum 1 = go 1 0
where

go xXs la

| null xs a

| otherwise = go (tail xs) (a + head xs)

galois

2008 Galois, Inc. All rights reserved.

Data.List.sum

Use at List Int type:

Swgo :: List Int -> Int# -> Int#
Swgo Xs n = case xs of
EmptyInt -> n

ConsInt x Xs -> Swgo xs (+# n Xx)

No unpacking. No views. No dictionaries.

Elements aready in unboxed form!
galois

2008 Galois, Inc. All rights reserved.

Trees and Sets

* Unpacking element types: obvious now

* Other ad hoc representation changes

— Coalescing nodes in trees
* Experiments: strong increase in density

— Non-representation of singletons
— Bools to bits

galois

2008 Galois, Inc. All rights reserved.

Non-uniform polymorphic containers

* So it is possible... generic approach to
faster polymorphic structures

— Can we do this automatically?
— Rules based on strictness information?

* CPR enabled, can we do it on sum types?

* Treats inliner as poor man's whole
program optimizer

* Nice: compiler extensions in the Ian%té@gg

2008 Galois, Inc. All rights reserved.

Where is all this?

* On Hackage
— cabal install vacuum-cairo
— cabal install adaptive-containers

* Other structures appearing (finger trees)
« BTW:

— cabal install fingertree
— cabal install random-access-list
— cabal install suffixtree

— cabal install avltree galois

2008 Galois, Inc. All rights reserved.

finfl7]

4 4
B

i s
U

]]

i
o Thanks!
g B
W 12
B 1 4 B U T
G @ mp B o\ B Wm0 B B[B 0 0
N Ir i " f',-.‘ patit! . » ¥ 1 i " ¥

