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DATA PARAL

CL HASKELL

» Data Parallel Haskell (DPH) was designed with irregular
barallel applications in mind:

» structure of parallel computations/data structures
impossible to predict statically

- Nested arrays as parallel data structure, elements and
shape information distributed over processors

* Interface similar to list operations:

- collective operations like map, fold, filter; array
comprehension executed in parallel
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Iwo forms of data parallelism

flat, regular

nested, irregular

limited expressiveness
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covers sparse structures and
even divide&conquer

close to the hardware model

needs to be turned into flat
parallelism for execution

well understood compilation
techniques

AAAAAAAAAAAAAAAA

highly experimental program
transformations
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Example: Sparse matrix vector multiplication

* matrix represented In compressed row format
* every non-zero element represented as pair of

column index and va
* every row as array o
FOWS

smvm':: [:[: (Int, Double)
SVIN' NV =

[:sumP [:x * (v !:1) | (,x) <-row:] | row <-1m :]
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elements, matrix as array of

:1:] -> [:Double:] -> [:Double:]
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Can we express regular computations in DPH?

* nested arrays could be interpreted as n-dim arrays:

transpose:: [:[:a:]:] > [:[:a:]:]
transpose m =
[[:v:i|v<-m :]|i<[:0..(dengthm)-1:]

» awkward for more complicated operations (e.g., relaxation)

» wasteful, error prone, inefficient
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DPH Compilation
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DPH Comepilation
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DPH Compilation
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D

SIGN QUESTIONS

» How much syntactic support?

» selection/indexing of subarrays

* array comprehension

» How much static checking of shape information?

» shape checking

* shape polymorphic operations

» Which basic operations do we need!

* Interaction between regular and irregular computations
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| RACKING AN

* Shape Information:

» Statically checked:
* dimensionalrty

* Dynamically checked:
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* size of each dimension

CCKING OF SHAP

INFORMATION

» dimensionality and length of each dimension
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N-DIM ARRAYS

* Arrays parametrised with shape descriptor type and element
/e

Array dim e |

- dimensionality on type level, size on value level

» element type restricted to basic types and pairs thereof
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DIMENSIONALITY

» element-wise mapping works on arrays of any dim, leaves It
unchanged:

map:: (a->Db)-> Array dim a -> Array dim b |

* some operations require the array to be of a specific
dimensionality:

inverse:: Array DIMR Double -> Array DIMZ Double '
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» for some operations, we want to express a more complex
relationship between argument and result dimension

(1)):: Array dim a -> selector -> Array (depends on selector) a,
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» for some operations, we want to express a more complex
relationship between argument and result dimension

(11):: Array dim a -> selector -> Array (depends on selector) a '

(4,0,1)
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» for some operations, we want to express a more complex
relationship between argument and result dimension

(11):: Array dim a -> selector -> Array (depends on selector) a l

(4,0,.)
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» for some operations, we want to express a more complex
relationship between argument and result dimension

] (11):: Array dim a -> selector -> Array (depends on selector) a l

(4,.,.)
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Representing the shape of an array:

* to do type level calculations on the dimensionality, we use

internally an inductive definition

type DIMO = ()
type DIM1 = (DIMO, Int)
type DIMR = (DIM1, Int)

* this Is only used as internal representation type, the user

should see them as n-tuples:

PLS
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The Index type

- the generalised selection notation expresses an relationship
between initial and projected dimension:

(4,0, 3)
(4, .,3)

* [ he Index type reflects this relationship on the type level:

data Index initialDim projectedDim where
IndexNil :Index () (O
IndexAll ::Index init proj -> Index (init, Int) (proj, Int)

Index]

ixed :: Int -> Index init proj -> Index (init, Int) proj

» terms of index typed only used internally

D
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The Index type

* Some examples

IndexFixed 4 (IndexAll (IndexFixed 3 ())):: Index DIM3 DIM1
4, .,3)

IndexFixed 4 (IndexAll (IndexAll ())):: Index DIM3 DIMRZ2
4,.,.)
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B RtRSIdETntion, we can express the Type of seleeias

(1:):: Array dim e -> Index dim dim’ -> Array dim’

» for example

arr:: Array DIMS Double

arr |: (Index

AAAAAAAAAAAAAAAA

ixed 4 (IndexFixed O (Index]

ixed 1 IndexNil)))
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* similarly, we can use the index type to express the type of a
oeneralized replicate:

replicate:: Array dim e -> Index dim* dim -> Array dim* e |

* examples:

s:: Array DIMO Int
replicate s (IndexFixed 5 ())
replicate s (IndexFixed 5 (IndexFixed 3 ())

v:: Array DIMI1 Int
replicate v (IndexAll (IndexFixed 5 ())):: Array DIMR Int
replicate v (IndexFixed 5 (IndexAll ())):: Array DIMR Int
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Mapping a reduction operation

» Collapsing all the elements along one or multiple dimensions
Into a scalar value

mapFold:: Array dim a -> Index dim dim’ -> (Array dim’a ->b) > ?
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The index type revisited

 we add an additional parameter to the index type

data Index a initialDim projectedDim where
IndexNil :Indexa () ()
IndexAll :: Index a init proj -> Index a (init, Int) (proj, Int)
IndexFixed :: a -> Index a init proj -> Index a (init, Int) proj

» and the type of iIndexing changes accordingly

(1)) Array dim e -> Index Int dim dim’ -> Array dim’ |
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» but still, what is the result type!

mapFold:: (Array dim a) ->
Index () dim dim’ -> (Array dim’ a ->b)-> Array (dim - dim’) b

» to perform subtraction on the type level, we define the type
family

type family (:-:) init proj
type instance (:-:) init () = init
type instance (:-:) (init,Int) (proj, Int) = (:-:) init proj
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» but still, what is the result type!

mapFold:: (Array dim a) ->
Index () dim dim’ -> (Array dim’ a ->b)-> Array (dim :-: dim’) b

» to perform subtraction on the type level, we define the type
family

type family (:-:) init proj
type instance (:-:) init () = init
type instance (:-:) (init,Int) (proj, Int) = (:-:) init proj
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BASIC OPERATIONS

* Separating reordering/extraction of array elements and
computations on elements

» Extraction/reordering:

bpermute::
Array dim a -> (dim’ -> dim) -> Array dim’ a

defaultBpermute::
Array dim a -> Db -> (dim’ -> Maybe dim) -> Array dim’ a
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OPERATIONS

» Transposing, tiling, rotation, shifts can be easily expressed in
terms of backpermute and default backpermute

* relaxation In terms of shifts or backpermute straight
forward

* No overhead If such a newly created array 1s iImmediately
used as an argument to another function (stream fusion)

* element-wise map, scan, fold, zipWith to perform
computations
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COMBINING REGULAR &
IRREGULAR COMPUTATIONS

* Regular arrays as elements of irregular structures are useful to
control the granularity of parallel computations

* Irregular structures insides regular arrays not allowed at the
moment - should they be!
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STATUS

* Implementation of library in progress

» Currently implementing examples to figure out If operations
etc appropriate

» User level syntax not fixed yet
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