
Typing Directories
Kathleen Fisher

AT&T Labs Research

Joint work with David Walker and Kenny Zhu

http://localhost/~kfisher/cgi-bin/learning-demo.cgi?userid=id.1244438841
http://localhost/~kfisher/cgi-bin/learning-demo.cgi?userid=id.1244438841

PADS Web Site

Config

Static
Content

Dynamic
Content

Scripts

Data Names
s1

sn

Users
i1.u1

Log

s1 sn...

s1

Makefiles1.p

s1.c

s1.h

s1.o

PADS Site

Admin

$ARCH

Data

u1

Users

Data

Various causes for errors:
• Missing files
• Directories/files in wrong locations
• Wrong permissions
• Links to wrong targets

If only I could...!!!

Describe required file and directory
structure, including permissions, etc.
Check that actual file system matches
specification.
Eliminate a whole class of errors!

If only I could...!!!

Describe required file and directory
structure, including permissions, etc.
Check that actual file system matches
specification.
Eliminate a whole class of errors!

Are there other examples where such a
description might be useful?

Coral Monitoring System

Monitoring system for an “Internet-scale, self-organizing,
web-content distribution network” developed at Princeton.

plab1.nyu.edu plabn.nyu.edu...

2009_06_07

plab2.nyu.edu

Coral

Monitor

corald.log

nssrv.log websrv.log

probed.log

2009_06_08

http://www.coralcdn.org/
http://www.coralcdn.org/

Observations on Monitoring

Coral is similar to other monitoring systems:
PlanetLab and a multitude of systems at AT&T.
Often a configuration file specifies which hosts
to monitor, what data to collect, and how often.
File and directory names encode meta-data.
Want to guarantee no
missing or corrupt files.

plab1.nyu.edu plabn.nyu.edu...

2009_06_07

plab2.nyu.edu

Coral

Monitor

corald.log

nssrv.log websrv.log

probed.log

2009_06_08

PADS Regression Suite

p

gen regress

foo.p

foo.cfoo.h

test_foo.c

regress_test_foo

examples

data

Takelist
foo

foo tests

$ARCH

test_foo.exe regress

regress_test_foo

Other Possible Examples
GHC SourceTree

Cabal system for GHC libraries

File Hierarchy Standard (FHS) for unix-like
installations

CVS, SVN, other source control systems

Disk cache for browser history, IMAP mail

Scientific data sets:
(e.g., “Huge Data but Small Programs”)

http://hackage.haskell.org/trac/ghc/wiki/Commentary/SourceTree
http://hackage.haskell.org/trac/ghc/wiki/Commentary/SourceTree
http://%20http://www.pathname.com/fhs/pub/fhs-2.3.html
http://%20http://www.pathname.com/fhs/pub/fhs-2.3.html

Other Possible Examples
GHC SourceTree

Cabal system for GHC libraries

File Hierarchy Standard (FHS) for unix-like
installations

CVS, SVN, other source control systems

Disk cache for browser history, IMAP mail

Scientific data sets:
(e.g., “Huge Data but Small Programs”)

Question 1: Can you think of other examples?

http://hackage.haskell.org/trac/ghc/wiki/Commentary/SourceTree
http://hackage.haskell.org/trac/ghc/wiki/Commentary/SourceTree
http://%20http://www.pathname.com/fhs/pub/fhs-2.3.html
http://%20http://www.pathname.com/fhs/pub/fhs-2.3.html

Possible Uses
Document structure

Where do I find particular file? Where do I put a
particular file? Output of system probe tools?

Check/Fix current state
Missing or extra files, wrong permissions owners
or groups, wrong link targets, stale data.

Semantics-based shell tools

-- Given directory description D:
> ls D -- list files in forest matching D
> mv D path -- move forest matching D to path
> grep D pattern -- look for pattern in forest matching D
> tar D d.tar -- tar forest matching D
> ...

Possible Uses, continued

Programmatic interface to directories
and files that leverages PL idioms.

Connect program variable to path on disk with
associated directory description
Lazily construct an in-memory representation

ptype pads_website_d = ...
let w :: pads_website_d = "/Users/kfisher/pads/padswebsite/PLConfig.PM"

let numUsers = List.length (users (admin w))

Possible Uses, continued

Programmatic interface to directories
and files that leverages PL idioms.

Connect program variable to path on disk with
associated directory description
Lazily construct an in-memory representation

ptype pads_website_d = ...
let w :: pads_website_d = "/Users/kfisher/pads/padswebsite/PLConfig.PM"

let numUsers = List.length (users (admin w))

Question 2: Can you think of other uses?

Observations

File names sometimes encode extra information.

Meta-data is important: permissions, owners,
groups, create time, modification time, sizes.

Symbolic links are important.

Files contain information about the structure of
other parts of the system.

Presence and absence information is important.

Want to transform physical rep into logical.

Example: CVS Directories

f1 f2

Root

RepositoryRoot

Current

d

Repository
Entries

f1

f2

d

Entries

f3

f3

CVS

CVS

Example: CVS Directories
ptype root_f = ...
ptype repository_f = ...

ptype d_entry_t = precord {
 "D/" ;
 dirname :: pstring "/";
 "////";
}

ptype f_entry_t = precord {
 "/";
 filename :: pstring "/"; "/";
 version :: pint * "." * pint; "/";
 mod_time :: pdate "/"; "/";
 rest :: pstring "/"; "/";
}

ptype entry_t = Dir of d_entry_t | File of f_entry_t
ptype entries_f = psource (entry_t plist)

f1 f2

Root

RepositoryRoot

Current

d

Repository
Entries

f1

f2

d

Entries

f3

f3

CVS

CVS

Example: CVS Directories

...

ptype cvs_d = pdirectory {
 root is "Root" :: root_f;
 repository is "Repository" :: repository_f;
 entries is "Entries" :: entries_f;
}

ptype cvs_repository_d = pdirectory {
 cvs is "CVS" :: cvs_d;
 files is [filename f :: p_any | File f <- cvs.entries];
 dirs is [dirname d :: cvs_repository_d | Dir d <- cvs.entries];
}

f1 f2

Root

RepositoryRoot

Current

d

Repository
Entries

f1

f2

d

Entries

f3

f3

CVS

CVS

Coral Monitoring System

plab1.nyu.edu plabn.nyu.edu...

2009_06_07

plab2.nyu.edu

Coral

Monitor

corald.log

nssrv.log websrv.log

probed.log

2009_06_08

http://www.coralcdn.org/
http://www.coralcdn.org/

Example: Coral Monitoring
ptype corald_t = ... {- pads description -}
ptype dns_t = ... {- pads description -}
ptype web_t = ... {- pads description -}
ptype probe_t = ... {- pads description -}

ptype host_d(h::phostname, t::pdate) = pdirectory {
 corald is "corald.log" :: corald_t <| timestamp >= t |>;
 coraldns is "nssrv.log" :: dns_t <| timestamp >= t |>;
 coralweb is "websrv.log" :: web_t <| timestamp >= t |>;
 probe is "probed.log" :: probe_t <| timestamp >= t |>;
 host :: phostname = h;
 time :: pdate = t;
 }

ptype coral_d = pdirectory {
 hosts is (host :: phostname)/(time :: pdate)
 :: host_d(host,time) list;
 }

plab1.nyu.edu plabn.nyu.edu...

2009_06_07

plab2.nyu.edu

Coral

Monitor

corald.log

nssrv.log websrv.log

probed.log

2009_06_08

PADS Web Site

Config

Static
Content

Dynamic
Content

Scripts

Data Names
s1

sn

Users
i1.u1

Log

s1 sn...

s1

Makefiles1.p

s1.c

s1.h

s1.o

PADS Site

Admin

$ARCH

Data

u1

Users

Data

Example: PADS Web Site

let check p = p == "rwxrwxr-x"

ptype website_d(config::ppath) = pdirectory {
 c is config :: config_f <| check perm |>;
 static is static_path c :: static_d <| check perm |>;
 dynamic is cgi_path c :: cgi_d <| check perm |>;
 scripts is script_path c :: scripts_d <| check perm |>;
 admin is static_dst c :: info_d <| check perm |>;
 data is (learn_home c) ++ "/examples/data"
 :: dataSource_d(sources admin_info)
 <| check perm |>;
 users is tmp_root c :: users_d(admin_info, data_dir)
 <| check perm |>;
}

Implementation Plans

Intend to build Haskell-based implementation.

Leverage type-directed programming.

Leverage laziness in loading structures.

Possible challenges:

Scale to large data sets?
How to manage mutability?
Will systems programmers be able to cope
with unfamiliar language?

Design Constraints

Programmer specifies the file and directory
structure in one place.

Precludes one declaration of desired type
and another of directory structure.

Generated in-memory type is data-specific
and contains records and data types.

Implies that processing directory/file
specifications will generate record and
data type declarations.

Questions for the Audience

Question 3: Given these design constraints,
Can I implement it as an embedded language?
If not, is there an existing framework
(Template Haskell?) expressive enough?
If not, what is the best way to extend the
language?

Question Summary

Examples where a directory description
might be useful.

Possible uses for directory descriptions.

Suggestions on implementation strategies.

