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1.Parallel programming and functional programming 
are intimately connected

2.Data parallelism is cheaper than control 
parallelism

3.Two approaches to data parallelism in Haskell

My three main points
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Parallel        Functional

What is hard about parallel programming?

Why is it easier in a functional language?
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What is Hard About 
Parallelism?
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What is Hard About 
Parallelism?

Indeterminate execution order!

Other difficulties are arguably a consequence (race 
conditions, mutual exclusion, and so on)
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Why Use a Functional 
Language?
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Why Use a Functional 
Language?

De-emphasises attention to execution order

‣ Purity and persistance

‣ Focus on data dependencies

Encourages the use of collective operations

‣ Wholemeal programming is better for you!
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Why Use a Functional 
Language?

De-emphasises attention to execution order

‣ Purity and persistance

‣ Focus on data dependencies

Encourages the use of collective operations

‣ Wholemeal programming is better for parallelism!
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Haskell?
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Laziness prevented bad habits

Haskell programmers are not spoiled by the luxury 
of predictable execution order — a luxury that we 
can no longer afford in the presence of parallelism.

Haskell programming culture and implementations 
avoid relying on a specific execution order

Haskell?

Thursday, 11 June 2009



Laziness prevented bad habits

Haskell programmers are not spoiled by the luxury 
of predictable execution order — a luxury that we 
can no longer afford in the presence of parallelism.

Haskell programming culture and implementations 
avoid relying on a specific execution order

Haskell?

Haskell is ready 
for parallelism!
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Why should we care 
about data parallelism?
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Data parallelism is 
successful in the large

On servers farms: CGI rendering, MapReduce, ...

Fortran and OpenMP for high-performance 
computing
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Data parallelism is 
successful in the large

On servers farms: CGI rendering, MapReduce, ...

Fortran and OpenMP for high-performance 
computing

Data parallelism becomes 
increasingly important in the small!
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Two competing extremes in current processor design
OUR DATA PARALLEL FUTURE

[Image courtesy of NVIDIA]

Quadcore
Xeon CPU

Tesla T10 
GPU
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Two competing extremes in current processor design
OUR DATA PARALLEL FUTURE

[Image courtesy of NVIDIA]

Why?
Quadcore
Xeon CPU

Tesla T10 
GPU
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Reduce power consumption!

✴GPU achieves 20x better performance/Watt (judging by peak performance)
✴Speedups between 20x to 150x have been observed in real applications
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We need data parallelism

GPU-like architectures require data parallelism

4 core CPU versus 240 core GPU are the current 
extreme

Intel Larrabee (in 2010): 32 cores x 16 vector units

Increasing core counts in CPUs and GPUs
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We need data parallelism

GPU-like architectures require data parallelism

4 core CPU versus 240 core GPU are the current 
extreme

Intel Larrabee (in 2010): 32 cores x 16 vector units

Increasing core counts in CPUs and GPUs

Data parallelism is good news 
for functional programming!
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Data parallelism and 
functional programming

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);
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Data parallelism and 
functional programming

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

FORTRAN 95

FORALL (i=1:n) 
  A(i,i) = pure_function(b,i)
END FORALL
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Data parallelism and 
functional programming

Parallel map is essential; reductions are common

Parallel code must be pure

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

FORTRAN 95

FORALL (i=1:n) 
  A(i,i) = pure_function(b,i)
END FORALL
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TWO APPROACHES TO 
DATA PARALLEL 
PROGRAMMING IN 
HASKELL
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Two forms of data parallelism

flat, regular nested, irregular
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Two forms of data parallelism

flat, regular nested, irregular

limited expressiveness
covers sparse structures and 

even divide&conquer

close to the hardware model
needs to be turned into flat 

parallelism for execution

well understood compilation 
techniques

highly experimental program 
transformations
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Two forms of data parallelism

flat, regular nested, irregular

limited expressiveness
covers sparse structures and 

even divide&conquer

close to the hardware model
needs to be turned into flat 

parallelism for execution

well understood compilation 
techniques

highly experimental program 
transformations
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Flat data parallelism in Haskell

Embedded language of array computations (two-
level language)

Datatype of multi-dimensional arrays [Gabi's talk]

Array elements limited to tuples of scalars (Int, 

Float, Bool, etc)

Collective array operations: map, fold, scan, zip, 
permute, etc.
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Scalar Alpha X Plus Y (SAXPY)

type Vector = Array DIM1 Float

saxpy :: GPU.Exp Float -> Vector -> Vector 
      -> Vector
saxpy alpha xs ys 
  = GPU.run $ do
      xs' <- use xs
      ys' <- use ys
      GPU.zipWith (\x y -> alpha*x + y) xs' ys'
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Scalar Alpha X Plus Y (SAXPY)

type Vector = Array DIM1 Float

saxpy :: GPU.Exp Float -> Vector -> Vector 
      -> Vector
saxpy alpha xs ys 
  = GPU.run $ do
      xs' <- use xs
      ys' <- use ys
      GPU.zipWith (\x y -> alpha*x + y) xs' ys'

GPU.Exp e — expression evaluated on the GPU

Monadic code to make sharing explicit

GPU.run — compile & execute embedded code

Thursday, 11 June 2009



First-order, except for a fixed set of higher-order 
collective operations

No recursion

No nesting — code is not compositional

No arrays of structured data

Limitations of the 
embedded language
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Prototype implementation targeting GPUs
Runtime code generation (computation only)
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Prototype implementation targeting GPUs
Runtime code generation (computation only)
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Prototype implementation targeting GPUs
Runtime code generation (computation only)
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Nested data parallelism in Haskell

Language extension (fully integrated)

Data type of nested parallel arrays [:e:] — here, 
e can be any type

Parallel evaluation semantics

Array comprehensions & collective operations 
(mapP, scanP, etc.)

Forthcoming: multidimensional arrays [Gabi's talk]
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Parallel Quicksort

qsort :: Ord a => [:a:] -> [:a:]
qsort [::] = [::]
qsort xs = let
             p       = xs!:0
             smaller = [:x | x <- xs, x < p:]
             equal   = [:x | x <- xs, x == p:]
             bigger  = [:x | x <- xs, x > p:]
             qs      = [:qsort xs‘ 
                       | xs‘ <- [:smaller, bigger:]:]
           in
           qs!:0 +:+ equal +:+ qs!:1
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Parallel Quicksort

qsort :: Ord a => [:a:] -> [:a:]
qsort [::] = [::]
qsort xs = let
             p       = xs!:0
             smaller = [:x | x <- xs, x < p:]
             equal   = [:x | x <- xs, x == p:]
             bigger  = [:x | x <- xs, x > p:]
             qs      = [:qsort xs‘ 
                       | xs‘ <- [:smaller, bigger:]:]
           in
           qs!:0 +:+ equal +:+ qs!:1

[: e | x <- xs:] — array comprehension

(!:), (+:+) — array indexing and append

collective array operations are parallel

Thursday, 11 June 2009



qsort
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qsort

qsort qsort
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qsort

qsort qsort

qsort qsort qsort qsort
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qsort

qsort qsort

qsort qsort qsort qsort

qs qsort qsortq qsq q qs
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qsort

qsort qsort

qsort qsort qsort qsort

qs qsort qsortq qsq q qs

q q qs qs q q q
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qsort

qsort qsort

qsort qsort qsort qsort

qs qsort qsortq qsq q qs

Exploiting both inner and intra function parallelism!

q q

q q qs qs q q q
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Properties of the 
language extension
First class

Arrays of structured data (e.g., arrays of trees)

‣ data RTree a = RTree a [:RTree a:]
Higher-order (e.g., parallel array of functions)

Arbitrarily nested parallelism — compositional

Much harder to implement!
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Implementation
Extension of the Glasgow Haskell Compiler (GHC)
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Implementation
Extension of the Glasgow Haskell Compiler (GHC)

Stage 1: The Vectoriser

Transforms all nested into flat parallelism

f :: a -> b
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Implementation
Extension of the Glasgow Haskell Compiler (GHC)

Stage 1: The Vectoriser

Transforms all nested into flat parallelism

f :: a -> b f^ :: [:a:] -> [:b:]

Stage 2: Library package DPH

High-performance flat array library

Communication and array fusion

Radical re-ordering of computations
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Current Implementation targeting multicore CPUs
GHC performs vectorisation transformation on Core IL
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Current Implementation targeting multicore CPUs
GHC performs vectorisation transformation on Core IL

2x Quad-Core Xeon = 8 cores
(8 thread contexts)

1x UltraSPARC T2 = 8 cores
(64 thread contexts)
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Summary
Data parallelism is getting increasingly important

Two approaches to data parallelism in Haskell:

1.Embedded array language for flat parallelism

2.Language extension of parallel arrays 
supporting nested parallelism

Nested parallelism is much harder to implement, 
but also much more expressive

Multiple backends (multicore CPUs, GPUs, ...)
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