
DATA PARALLELISM IN HASKELL
Manuel M. T. Chakravarty
University of New South Wales

INCLUDES JOINT WORK WITH

Gabriele Keller
Sean Lee

Roman Leshchinskiy
Simon Peyton Jones

Thursday, 11 June 2009

1.Parallel programming and functional programming
are intimately connected

2.Data parallelism is cheaper than control
parallelism

3.Two approaches to data parallelism in Haskell

My three main points

Thursday, 11 June 2009

Parallel Functional

What is hard about parallel programming?

Why is it easier in a functional language?

Thursday, 11 June 2009

What is Hard About
Parallelism?

Thursday, 11 June 2009

What is Hard About
Parallelism?

Indeterminate execution order!

Other difficulties are arguably a consequence (race
conditions, mutual exclusion, and so on)

Thursday, 11 June 2009

Why Use a Functional
Language?

Thursday, 11 June 2009

Why Use a Functional
Language?

De-emphasises attention to execution order

‣ Purity and persistance

‣ Focus on data dependencies

Encourages the use of collective operations

‣ Wholemeal programming is better for you!

Thursday, 11 June 2009

Why Use a Functional
Language?

De-emphasises attention to execution order

‣ Purity and persistance

‣ Focus on data dependencies

Encourages the use of collective operations

‣ Wholemeal programming is better for parallelism!

Thursday, 11 June 2009

Haskell?

Thursday, 11 June 2009

Laziness prevented bad habits

Haskell programmers are not spoiled by the luxury
of predictable execution order — a luxury that we
can no longer afford in the presence of parallelism.

Haskell programming culture and implementations
avoid relying on a specific execution order

Haskell?

Thursday, 11 June 2009

Laziness prevented bad habits

Haskell programmers are not spoiled by the luxury
of predictable execution order — a luxury that we
can no longer afford in the presence of parallelism.

Haskell programming culture and implementations
avoid relying on a specific execution order

Haskell?

Haskell is ready
for parallelism!

Thursday, 11 June 2009

Why should we care
about data parallelism?

Thursday, 11 June 2009

Data parallelism is
successful in the large

On servers farms: CGI rendering, MapReduce, ...

Fortran and OpenMP for high-performance
computing

Thursday, 11 June 2009

Data parallelism is
successful in the large

On servers farms: CGI rendering, MapReduce, ...

Fortran and OpenMP for high-performance
computing

Data parallelism becomes
increasingly important in the small!

Thursday, 11 June 2009

Two competing extremes in current processor design
OUR DATA PARALLEL FUTURE

[Image courtesy of NVIDIA]

Quadcore
Xeon CPU

Tesla T10
GPU

Thursday, 11 June 2009

Two competing extremes in current processor design
OUR DATA PARALLEL FUTURE

[Image courtesy of NVIDIA]

Why?
Quadcore
Xeon CPU

Tesla T10
GPU

Thursday, 11 June 2009

Reduce power consumption!

✴GPU achieves 20x better performance/Watt (judging by peak performance)
✴Speedups between 20x to 150x have been observed in real applications

Thursday, 11 June 2009

We need data parallelism

GPU-like architectures require data parallelism

4 core CPU versus 240 core GPU are the current
extreme

Intel Larrabee (in 2010): 32 cores x 16 vector units

Increasing core counts in CPUs and GPUs

Thursday, 11 June 2009

We need data parallelism

GPU-like architectures require data parallelism

4 core CPU versus 240 core GPU are the current
extreme

Intel Larrabee (in 2010): 32 cores x 16 vector units

Increasing core counts in CPUs and GPUs

Data parallelism is good news
for functional programming!

Thursday, 11 June 2009

Data parallelism and
functional programming

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

Thursday, 11 June 2009

Data parallelism and
functional programming

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

FORTRAN 95

FORALL (i=1:n)
 A(i,i) = pure_function(b,i)
END FORALL

Thursday, 11 June 2009

Data parallelism and
functional programming

Parallel map is essential; reductions are common

Parallel code must be pure

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

FORTRAN 95

FORALL (i=1:n)
 A(i,i) = pure_function(b,i)
END FORALL

Thursday, 11 June 2009

TWO APPROACHES TO
DATA PARALLEL
PROGRAMMING IN
HASKELL

Thursday, 11 June 2009

Two forms of data parallelism

flat, regular nested, irregular

Thursday, 11 June 2009

Two forms of data parallelism

flat, regular nested, irregular

Thursday, 11 June 2009

Two forms of data parallelism

flat, regular nested, irregular

limited expressiveness
covers sparse structures and

even divide&conquer

close to the hardware model
needs to be turned into flat

parallelism for execution

well understood compilation
techniques

highly experimental program
transformations

Thursday, 11 June 2009

Two forms of data parallelism

flat, regular nested, irregular

limited expressiveness
covers sparse structures and

even divide&conquer

close to the hardware model
needs to be turned into flat

parallelism for execution

well understood compilation
techniques

highly experimental program
transformations

Thursday, 11 June 2009

Two forms of data parallelism

flat, regular nested, irregular

limited expressiveness
covers sparse structures and

even divide&conquer

close to the hardware model
needs to be turned into flat

parallelism for execution

well understood compilation
techniques

highly experimental program
transformations

Thursday, 11 June 2009

Flat data parallelism in Haskell

Embedded language of array computations (two-
level language)

Datatype of multi-dimensional arrays [Gabi's talk]

Array elements limited to tuples of scalars (Int,

Float, Bool, etc)

Collective array operations: map, fold, scan, zip,
permute, etc.

Thursday, 11 June 2009

Scalar Alpha X Plus Y (SAXPY)

type Vector = Array DIM1 Float

saxpy :: GPU.Exp Float -> Vector -> Vector
 -> Vector
saxpy alpha xs ys
 = GPU.run $ do
 xs' <- use xs
 ys' <- use ys
 GPU.zipWith (\x y -> alpha*x + y) xs' ys'

Thursday, 11 June 2009

Scalar Alpha X Plus Y (SAXPY)

type Vector = Array DIM1 Float

saxpy :: GPU.Exp Float -> Vector -> Vector
 -> Vector
saxpy alpha xs ys
 = GPU.run $ do
 xs' <- use xs
 ys' <- use ys
 GPU.zipWith (\x y -> alpha*x + y) xs' ys'

GPU.Exp e — expression evaluated on the GPU

Monadic code to make sharing explicit

GPU.run — compile & execute embedded code

Thursday, 11 June 2009

First-order, except for a fixed set of higher-order
collective operations

No recursion

No nesting — code is not compositional

No arrays of structured data

Limitations of the
embedded language

Thursday, 11 June 2009

Prototype implementation targeting GPUs
Runtime code generation (computation only)

1

10

100

1000

10000

100000

10 30 50 70 90 110 130 150 170 190

SAXPY
Ti

m
e

(m
ill

is
ec

on
d

s)

Number of elements (million)

Plain Haskell, CPU only (AMD Sempron) Plain Haskell, CPU only (Intel Xeon)
Haskell with GPU.gen (GeForce 8800GTS) Haskell with GPU.gen (Tesla S1070 x1)

Thursday, 11 June 2009

Prototype implementation targeting GPUs
Runtime code generation (computation only)

0.1

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sparse Matrix Vector Multiplication

Ti
m

e
(m

ill
is

ec
on

d
s)

Number of non-zero elements (million)

Plain Haskell, CPU only (AMD Sempron) Plain Haskell, CPU only (Intel Xeon)
Haskell with GPU.gen (GeForce 8800GTS) Haskell with GPU.gen (Tesla S1070 x1)

Thursday, 11 June 2009

Prototype implementation targeting GPUs
Runtime code generation (computation only)

1

10

100

1000

10000

100000

1000000

10 30 50 70 90 110 130 150 170 190

Black Scholes Call Options
Ti

m
e

(m
ill

is
ec

on
d

s)

Number of options (million)

Plain Haskell, CPU only (AMD Sempron) Plain Haskell, CPU only (Intel Xeon)
Haskell with GPU.gen (GeForce 8800GTS) Haskell with GPU.gen (Tesla S1070 x1)
C for CUDA (Tesla S1070 x1)

Thursday, 11 June 2009

Nested data parallelism in Haskell

Language extension (fully integrated)

Data type of nested parallel arrays [:e:] — here,
e can be any type

Parallel evaluation semantics

Array comprehensions & collective operations
(mapP, scanP, etc.)

Forthcoming: multidimensional arrays [Gabi's talk]

Thursday, 11 June 2009

Parallel Quicksort

qsort :: Ord a => [:a:] -> [:a:]
qsort [::] = [::]
qsort xs = let
 p = xs!:0
 smaller = [:x | x <- xs, x < p:]
 equal = [:x | x <- xs, x == p:]
 bigger = [:x | x <- xs, x > p:]
 qs = [:qsort xs‘
 | xs‘ <- [:smaller, bigger:]:]
 in
 qs!:0 +:+ equal +:+ qs!:1

Thursday, 11 June 2009

Parallel Quicksort

qsort :: Ord a => [:a:] -> [:a:]
qsort [::] = [::]
qsort xs = let
 p = xs!:0
 smaller = [:x | x <- xs, x < p:]
 equal = [:x | x <- xs, x == p:]
 bigger = [:x | x <- xs, x > p:]
 qs = [:qsort xs‘
 | xs‘ <- [:smaller, bigger:]:]
 in
 qs!:0 +:+ equal +:+ qs!:1

[: e | x <- xs:] — array comprehension

(!:), (+:+) — array indexing and append

collective array operations are parallel

Thursday, 11 June 2009

qsort

Thursday, 11 June 2009

qsort

qsort qsort

Thursday, 11 June 2009

qsort

qsort qsort

qsort qsort qsort qsort

Thursday, 11 June 2009

qsort

qsort qsort

qsort qsort qsort qsort

qs qsort qsortq qsq q qs

Thursday, 11 June 2009

qsort

qsort qsort

qsort qsort qsort qsort

qs qsort qsortq qsq q qs

q q qs qs q q q

Thursday, 11 June 2009

qsort

qsort qsort

qsort qsort qsort qsort

qs qsort qsortq qsq q qs

Exploiting both inner and intra function parallelism!

q q

q q qs qs q q q

Thursday, 11 June 2009

Properties of the
language extension
First class

Arrays of structured data (e.g., arrays of trees)

‣ data RTree a = RTree a [:RTree a:]
Higher-order (e.g., parallel array of functions)

Arbitrarily nested parallelism — compositional

Much harder to implement!

Thursday, 11 June 2009

Implementation
Extension of the Glasgow Haskell Compiler (GHC)

Thursday, 11 June 2009

Implementation
Extension of the Glasgow Haskell Compiler (GHC)

Stage 1: The Vectoriser

Transforms all nested into flat parallelism

f :: a -> b

Thursday, 11 June 2009

Implementation
Extension of the Glasgow Haskell Compiler (GHC)

Stage 1: The Vectoriser

Transforms all nested into flat parallelism

f :: a -> b f^ :: [:a:] -> [:b:]

Thursday, 11 June 2009

Implementation
Extension of the Glasgow Haskell Compiler (GHC)

Stage 1: The Vectoriser

Transforms all nested into flat parallelism

f :: a -> b f^ :: [:a:] -> [:b:]

Stage 2: Library package DPH

High-performance flat array library

Communication and array fusion

Radical re-ordering of computations

Thursday, 11 June 2009

Current Implementation targeting multicore CPUs
GHC performs vectorisation transformation on Core IL

Thursday, 11 June 2009

Current Implementation targeting multicore CPUs
GHC performs vectorisation transformation on Core IL

2x Quad-Core Xeon = 8 cores
(8 thread contexts)

1x UltraSPARC T2 = 8 cores
(64 thread contexts)

Thursday, 11 June 2009

Summary
Data parallelism is getting increasingly important

Two approaches to data parallelism in Haskell:

1.Embedded array language for flat parallelism

2.Language extension of parallel arrays
supporting nested parallelism

Nested parallelism is much harder to implement,
but also much more expressive

Multiple backends (multicore CPUs, GPUs, ...)

Thursday, 11 June 2009

