DATA PARALLELISM IN HASKELL Manuel M. T. Chakravarty University of New South Wales

INCLUDES JOINT WORK WITH Gabriele Keller Sean Lee Roman Leshchinskiy Simon Peyton Jones

My three main points

1. Parallel programming and functional programming are intimately connected

2. Data parallelism is cheaper than control parallelism

3. Two approaches to data parallelism in Haskell

Parallel - Functional

* What is hard about parallel programming?

* Why is it easier in a functional language?

What is Hard About Parallelism?

What is Hard About Parallelism?

* Indeterminate execution order!

* Other difficulties are arguably a consequence (race conditions, mutual exclusion, and so on)

Why Use a Functional Language?

Why Use a Functional Language?

* De-emphasises attention to execution order

- Purity and persistance
- Focus on data dependencies
- * Encourages the use of collective operations
 - Wholemeal programming is better for you!

Why Use a Functional Language?

* De-emphasises attention to execution order

- Purity and persistance
- Focus on data dependencies
- * Encourages the use of collective operations
 - Wholemeal programming is better for parallelism!

Haskell?

Haskell?

* Laziness prevented bad habits

- * Haskell programmers are not spoiled by the luxury of predictable execution order — a luxury that we can no longer afford in the presence of parallelism.
- * Haskell programming culture and implementations avoid relying on a specific execution order

Haskell?

***** Lazines

Haskell of predi can no l

***** Haskell

Haskell is ready for parallelism!

that we arallelism.

entations

avoid relying on a specific execution order

Why should we care about data parallelism?

Data parallelism is successful in the large

* On servers farms: CGI rendering, MapReduce, ...

* Fortran and OpenMP for high-performance computing Data parallelism is successful in the large

* On servers farms: CGI rendering, MapReduce, ...

* Fortran and OpenMP for high-performance computing

Data parallelism becomes increasingly important in the small!

[Image courtesy of NVIDIA]

Quadcore Xeon CPU

Tesla T10 GPU

OUR DATA PARALLEL FUTURE

Two competing extremes in current processor design

[Image courtesy of NVIDIA]

Quadcore Xeon CPU Tesla T10 GPU

Why?

OUR DATA PARALLEL FUTURE

Two competing extremes in current processor design

Reduce power consumption!

* GPU achieves 20x better performance/Watt (judging by peak performance) * Speedups between 20x to 150x have been observed in real applications

Thursday, 11 June 2009

We need data parallelism

GPU-like architectures require data parallelism

- # 4 core CPU versus 240 core GPU are the current extreme
- # Intel Larrabee (in 2010): 32 cores x 16 vector units
- Increasing core counts in CPUs and GPUs

We need data parallelism

GPU-like architectures require data parallelism

- # 4 core CPU versus 240 core GPU are the current extreme
- # Intel Larrabee (in 2010): 32 cores x 16 vector units
- Increasing core counts in CPUs and GPUs

Data parallelism is good news for functional programming!

Data parallelism and functional programming

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

Data parallelism and functional programming

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

FORTRAN 95

```
FORALL (i=1:n)
   A(i,i) = pure_function(b,i)
END FORALL
```


Data parallelism and functional programming

CUDA Kernel Invocation

seq_kernel<<N, M>>(arg1, ..., argn);

FORTRAN 95

```
FORALL (i=1:n)
   A(i,i) = pure_function(b,i)
END FORALL
```

* Parallel map is essential; reductions are common
* Parallel code must be pure

TWO APPROACHES TO DATA PARALLEL PROGRAMMING IN HASKELL

flat, regular	nested, irregular

flat, regular	nested, irregular
limited expressiveness	covers sparse structures and even divide&conquer
close to the hardware model	needs to be turned into flat parallelism for execution

flat, regular	nested, irregular
limited expressiveness	covers sparse structures and even divide&conquer
close to the hardware model	needs to be turned into flat parallelism for execution
well understood compilation techniques	highly experimental program transformations

Flat data parallelism in Haskell

- * Embedded language of array computations (twolevel language)
- * Datatype of multi-dimensional arrays [Gabi's talk]
- # Array elements limited to tuples of scalars (Int, Float, Bool, etc)
- * Collective array operations: map, fold, scan, zip, permute, etc.

Scalar Alpha X Plus Y (SAXPY)

```
type Vector = Array DIM1 Float
saxpy :: GPU.Exp Float -> Vector -> Vector
    -> Vector
saxpy alpha xs ys
= GPU.run $ do
    xs' <- use xs
    ys' <- use ys
    GPU.zipWith (\x y -> alpha*x + y) xs' ys'
```


Scalar Alpha X Plus Y (SAXPY)

```
type Vector = Array DIM1 Float
saxpy :: GPU.Exp Float -> Vector -> Vector
    -> Vector
saxpy alpha xs ys
= GPU.run $ do
    xs' <- use xs
    ys' <- use ys
    GPU.zipWith (\x y -> alpha*x + y) xs' ys'
```

* GPU.Exp e - expression evaluated on the GPU

* Monadic code to make sharing explicit

* GPU.run — compile & execute embedded code

 \mathbf{PLS}

Limitations of the embedded language

* First-order, except for a fixed set of higher-order collective operations

* No recursion

* No nesting — code is not compositional

* No arrays of structured data

Haskell with GPU.gen (Tesla S1070 x1) •

Prototype implementation targeting GPUs

Runtime code generation (computation only)

Thursday, 11 June 2009

•••

- Haskell with GPU.gen (GeForce 8800GTS)
- C for CUDA (Tesla S1070 x1)

- Plain Haskell, CPU only (Intel Xeon)
- Haskell with GPU.gen (Tesla S1070 x1) -----

Prototype implementation targeting GPUs

Runtime code generation (computation only)

Nested data parallelism in Haskell

- * Language extension (fully integrated)
- * Data type of nested parallel arrays [:e:] here, e can be any type
- * Parallel evaluation semantics
- # Array comprehensions & collective operations
 (mapP, scanP, etc.)
- * Forthcoming: multidimensional arrays [Gabi's talk]

Parallel Quicksort

Parallel Quicksort

```
qsort :: Ord a => [:a:] -> [:a:]
qsort [::] = [::]
qsort xs = let
                   = xs!:0
             p
             smaller = [:x | x < -xs, x < p:]
             equal = [:x | x < -xs, x == p:]
             bigger = [:x | x <- xs, x > p:]
             qs = [:qsort xs'
                       xs' <- [:smaller, bigger:]:]</pre>
           in
           qs!:0 +:+ equal +:+ qs!:1
* [: e | x < - xs:] - array comprehension
* (!:), (+:+) — array indexing and append
* collective array operations are parallel
                                                  \mathbf{PLS}
```

Thursday, 11 June 2009

qsort

Properties of the language extension

First class

* Arrays of structured data (e.g., arrays of trees)
> data RTree a = RTree a [:RTree a:]
* Higher-order (e.g., parallel array of functions)
* Arbitrarily nested parallelism — compositional
* Much harder to implement!

* Extension of the Glasgow Haskell Compiler (GHC)

* Extension of the Glasgow Haskell Compiler (GHC)

* Stage 1: The Vectoriser

* Transforms all nested into flat parallelism

*****f :: a -> b

* Extension of the Glasgow Haskell Compiler (GHC)

* Stage 1: The Vectoriser

* Transforms all nested into flat parallelism

- * Extension of the Glasgow Haskell Compiler (GHC)
- * Stage 1: The Vectoriser
 - * Transforms all nested into flat parallelism

- * Stage 2: Library package DPH
 - # High-performance flat array library
 - * Communication and array fusion
- * Radical re-ordering of computations

Current Implementation targeting multicore CPUs

GHC performs vectorisation transformation on Core IL

2x Quad-Core Xeon = 8 cores (8 thread contexts)

1x UltraSPARC T2 = 8 cores (64 thread contexts)

Current Implementation targeting multicore CPUs

GHC performs vectorisation transformation on Core IL

Thursday, 11 June 2009

Summary

* Data parallelism is getting increasingly important

* Two approaches to data parallelism in Haskell:

- 1. Embedded array language for flat parallelism
- 2. Language extension of parallel arrays supporting nested parallelism
- * Nested parallelism is much harder to implement, but also much more expressive
- * Multiple backends (multicore CPUs, GPUs, ...)

