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My Research Interests

Type systems
• for static ananysis

– Linear types, resource usage analysis, etc.

• for object-oriented languages
– Generics, wildcards, union types, self types, gradual 

typing, etc.
– Using Featherweight Java

• for multi-stage programming
– Curry-Howard isomorphisms for modal logic
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Typical Type Systems for
Class-Based Object-Oriented PLs

• Class names as types
• Inheritance as subtyping
Resulting in difficulty in reusing classes with 

recursive interfaces by inheritance
– Standard (non)solution: downcasts
– Self types (often called MyType [Bruce et al.])
– OCaml
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Today’s Talk

• Review of MyType
• Challenge in programming generic collection 

classes
• Self Type Constructors: Extending MyType to 

the type constructor level
– …with unpleasant complication(!)

4



MyType in LOOJ [Bruce et al. 04]

• Keyword “This” represents the class in which it appears
– Its meaning changes when it is inherited

class C {
int f;
boolean isEqual(This that){ // binary method

return this.f == that.f;
}   }
class D extends C {

int g;
boolean isEqual(This that){

return super.isEqual(that) && this.g == that.g; // well-typed
}   }
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Exact Types to Avoid Unsoundness

• Covariant change of argument types is unsound 
under inheritance-based subtyping

• LOOJ has “exact types” @C
– @C stands for only C objects (not a subclass of C)
– isEqual() can be invoked only if the receiver type is 

exact
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D d = …;   C c1 = d;   C c2 = …; 
c1.isEqual(c2);



Typing rule for MyType

• A method body is typed under the assumption 
that This is a subtype of the current class
This<:C, that:This, this:This┠ this.f == that.f : bool

• So that the method can be used any subclass 
of C
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“This” is indeed a Polymorphic Type 
Variable!
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class C<This extends C<This>> { // F-bounded polymorphism
int f;
boolean isEqual(This that){ // binary method

return this.f == that.f;
}   }
class D<This extends D<This>> extends C<This> {

int g;
boolean isEqual(This that){

return super.isEqual(that) && this.g == that.g;
}   }
class FixC extends C<FixC> {}   // Corresponding to @C
class FixD extends D<FixD> {}  // No subtyping btw. @C and @D



Digression: clone() with MyType

• Doesn’t quite work
– This is an (unknown) subtype of C, not vice versa

• One solution is nonheritable methods [I. & 
Saito’09], in which
– This is equal to the current class, but
– Every subclass has to override them
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class C {
This clone() { return new C(); }

}



Today’s Talk

• Review of MyType
• Challenge in programming generic collection 

classes
• Self Type Constructors: Extending MyType to 

the type constructor level
– …with unpleasant complication(!)
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Today’s challenge:
map() in generic collection classes

• Bag implements map()
– map() returns the same kind of collection as the receiver

• Set is a subclass of Bag
– Set reuses Bag's implementation as much as possible

• Set prohibits duplicate elements
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1.2, 2.1, 3.4, 3.5
Bag<Float>

1, 2, 3, 3
Bag<Integer>

.map(floor)

1.2, 2.1, 3.4, 3.5
Set<Float>

1, 2, 3
Set<Integer>

.map(floor)

floor: FloatInteger



Skeletons of Bag and Set classes
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class Bag<T> {

void add(T t) { ... }

<U> Bag<U> create(){
return new Bag<U>();

}

<U> ? map(TU f) {
? tmp=create();
for(T t: this) tmp.add(f(t));
return tmp;

}   
}

class Set<T extends Comparable> 
extends Bag<T> {

// overriding to prevent
// duplicate elements 
void add(T t) { ... } 

<U> Set<U> create(){
return new Set<U>();

}

// no redefinition of map()
} 

What is the return 
type of map()?

T's bound 
is refined

interface Comparable {
int compare(This that);

} 



Covariant Refinement of Return Types 
is not a Solution

• Set must override map()
• Downcasts would fail at run time if create() were not 

overridden in Set
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class Bag<T> {
<U> Bag<U> map(TU f) { ... }

}

class Set<T> extends Bag<T> {
<U> Set<U> map(TU f) {

return (Set<U>) super.map(f);
}   }



MyType and Generics in LOOJ

• The meaning of MyType in a generic class includes
the formal type parameters
– e.g. This in class Bag<T> means Bag<T>

• So, MyType cannot be used for the return type of 
map()
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Today’s Talk

• Review of MyType
• Challenge in programming generic collection 

classes
• Self Type Constructors: Extending MyType to 

the type constructor level
– …with unpleasant complication(!)
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Self Type Constructors:
MyType as a Type Constructor

• This means a class name, without type parameters

class Bag<T> {

<U> This<U> create() { ... }  // should be nonheritable

<U> This<U> map(TU f) {
This<U> tmp=create();
for(T t: this) tmp.add(f(t));
return tmp;

}
}
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The meaning of This

This takes one argument



General use case of 
Self Type Constructors

• Writing the interface of a generic class that refers to 
itself recursively but with different type instantiations
– e.g.  collection with flatMap()
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class Bag<T> {

<U> This<U> flatMap(TThis<U> f) {
This<U> tmp=create();
for(T t: this) tmp.append(f(t));
return tmp; 

}   }

"this", "is", "high"
Set<String>

't', 'h', 'i', 's', 'g'
Set<Character>

.flatMap(str2char)

str2char:
StringSet<Character>



Today’s Talk

• Review of MyType
• Challenge in programming generic collection 

classes
• Self Type Constructors: Extending MyType to 

the type constructor level
– …with unpleasant complication(!)
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Refining bounds can yield 
ill-formed types in subclasses

• map() inherited to Set is not safe (ill-kinded)

• So, we should prohibit refinement of bounds
• How can we declare Set, then?
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class Bag<T> {
<U> This<U> map(TU f) { ... }

}
class Set<T extends Comparable> extends Bag<T> {

// <U> This<U> map(TU f) { ... } 
// This<U> is ill-formed here

}

inherited



How the body of map() is typed

• Bag: *→*, T: *, This <: Bag, U: *, 
f: T→U, this: This<T>┠ body : This<U>

• If Set is a subtype of Bag, then body will 
remain well typed (and can be inherited)

• But, actually, it’s not!
– Set: ∀(X <: Comparable)→*

• Subtype-constrained dependent kind
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If a type parameter is not included in the 
meaning of This, its bound must be fixed
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T's 
range

class Bag<T>

Object

T's 
range

class Set<T>

Object

subclassing

undesirable 
bound



It is OK to refine bounds in LOOJ

• since the meaning of This includes type parameters
– in other words, This does not take any arguments
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class Bag<T> {
This map(TT f) { ... } // monomorphic map()

}

class Set<T extends Comparable> extends Bag<T> {
// This map(TT f) { ... } 
// This is well formed

}

inherited



How the body of map() is typed

• Bag: *→*, T: *, This <: Bag<T>,  
f: T→T, this: This┠ body : This

• Set is not a subtype of Bag, but …
• Set<T> is a subtype of Bag<T> for any type T!

– It’s declared to be so

• So, body remains well-typed when the upper 
bound of This is replaced with Set<T>
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If a type parameter is included in the 
meaning of This, its bound can be refined
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T's 
range

class Bag<T>

Object

T's 
range

class Set<T extends 
Comparable>

Comparable

subclassing

This means Bag<T>

refine



B's 
range

Introducing two kinds of type variables 
may solve the problem!
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T's 
range

class 
Bag<B,T extends B>

Object

class
Set<B extends 

Comparable,
T extends B>

Comparable

subclassing

B's 
range

T's 
range

refine

B B

The meaning of This



Indeed, it solves the problem!
• Bag: ∀(B:*)→∀(T<:B)→*
• Set: ∀(B<:Comparable)→ ∀(T<:B)→*
• B:*, T<:B, This <: Bag<B>, U <:B, 

f: T→U, this: This<T>┠ body : This<U>
• Again, Set is not a subtype of Bag, but…
• Set<B> is a subtype of Bag<B> for any B, which 

is a subtype of Comparable
• Replacing the bounds for B and This with 

subtypes (i.e., Comparable and Set<B>) leads 
to what we want
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Correct Bag and Set classes
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class Bag<B; T extends B> {
<U extends B> This<U> map(TU f) { ... }

}

class Set<B extends Comparable; T extends B>
extends Bag<B,T> {

// <U extends B> This<U> map(TU f) { ... }
// This<U> is well formed

}

The meaning of This

inherited
This takes one argument



Signature resolution in client code

• This in the return type is replaced with the class 
name and refinable-bound params of the receiver
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Bag<Number,Float> floatbag=... ;
Set<Number,Float> floatset=... ;

Bag<Number,Integer> integerbag=floatbag.map(floor);

Set<Number,Integer> integerset=floatset.map(floor);

= This<U>{U:=Integer}{This:=Bag<Number>}

= This<U>{U:=Integer}{This:=Set<Number>}



Summary of Self Type Constructors

• This in a generic class is a type constructor, which
– takes arguments as many as the number of parameters 

before a semicolon
– means a class name with parameters before the semicolon
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class C<X1, X2, ..., Xn;  Y1, Y2, ..., Yn> {

} The meaning 
of This

Bounds are refinable Bounds are fixed



FGJstc: A Formal Core Calculus of 
Self Type Constructors

• Extension of Featherweight GJ [I., Pierce, Wadler’99] w/
– self type constructors
– exact types
– constructor-polymorphic methods
– exact statements
– and the usual features of FJ family

• Kinding is a bit complicated
• FGJstc enjoys type soundness

– subject reduction theorem
– progress theorem
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Encoding self type constructors with 
higher-order type constructors

• Higher-order type constructors
– Classes can be parameterized by type constructors

• Type declarations become (even) more complicated
– FGJω [Altherr and Cremet. J. Object Technology 08] 
– Scala [Moors, Piessens and Odersky. OOPSLA08]
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Encoding in FGJω

• by combination of
– Higher-order type constructors
– F-bounded polymorphism

• requires fixed point classes
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class Bag<Bound: *→*, T extends Bound<T>,
This extends λ(X extends Bound<X>).Bag<Bound,X,This>> {

}

class FixBag<Bound<_>, T extends Bound<T>> 
extends Bag<Bound,T,FixBag> { }

class Bag<Bound;T extends Bound> {
} 

FGJω

Our Solution



Encoding in Scala

• by combination of
– Higher-order type constructors
– Abstract type members [Odersky et al. 03]
– F-bounded polymorphism [Canning et al. 89]

• A type variable appears in its upper bound

33

class Bag<Bound<_>, T extends Bound<T>> {
type Self<X extends Bound<X>> extends Bag<Bound,X>

}

class Bag<Bound;T extends Bound> {
} 

Scala in Java-like syntax

Our solution



Scala 2.8.0 β1 (as of Feb., 2010)

• map() takes
– the result type as another type parameter
– A factory object which returns an object of the result type

• Compiler will supply the factory
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class Bag<T> {
<U, That> That map (TU f, implicit Factory<U,That> fact){ ... }

}
class Set<T> extends Bag<T> {

Set(implicit TComparable<T> c){ ... } //constructor
} Scala in Java-like syntax

-2, 1, 2, -1
Set<Integer>

2, 1
Set<Integer>

2, 1, 2, 1
Bag<Integer>

.map(abs)-2, 1, 2, -1
Bag<Integer>

.map(abs)

IntegerInteger

Static types affect the result



Conclusion

• Self Type Constructors
– for the interface of a generic class that refers to itself 

recursively but different type instantiations
– Useful for map(), flatMap(), and so on

• Idea looks simple but more complicated than 
expected
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