
Self Type Constructors

Atsushi Igarashi
Kyoto University

Joint work with Chieri Saito

1

My Research Interests

Type systems
• for static ananysis

– Linear types, resource usage analysis, etc.

• for object-oriented languages
– Generics, wildcards, union types, self types, gradual

typing, etc.
– Using Featherweight Java

• for multi-stage programming
– Curry-Howard isomorphisms for modal logic

2

Typical Type Systems for
Class-Based Object-Oriented PLs

• Class names as types
• Inheritance as subtyping
Resulting in difficulty in reusing classes with

recursive interfaces by inheritance
– Standard (non)solution: downcasts
– Self types (often called MyType [Bruce et al.])
– OCaml

3

Today’s Talk

• Review of MyType
• Challenge in programming generic collection

classes
• Self Type Constructors: Extending MyType to

the type constructor level
– …with unpleasant complication(!)

4

MyType in LOOJ [Bruce et al. 04]

• Keyword “This” represents the class in which it appears
– Its meaning changes when it is inherited

class C {
int f;
boolean isEqual(This that){ // binary method

return this.f == that.f;
} }
class D extends C {

int g;
boolean isEqual(This that){

return super.isEqual(that) && this.g == that.g; // well-typed
} }

5

Exact Types to Avoid Unsoundness

• Covariant change of argument types is unsound
under inheritance-based subtyping

• LOOJ has “exact types” @C
– @C stands for only C objects (not a subclass of C)
– isEqual() can be invoked only if the receiver type is

exact

6

D d = …; C c1 = d; C c2 = …;
c1.isEqual(c2);

Typing rule for MyType

• A method body is typed under the assumption
that This is a subtype of the current class
This<:C, that:This, this:This┠ this.f == that.f : bool

• So that the method can be used any subclass
of C

7

“This” is indeed a Polymorphic Type
Variable!

8

class C<This extends C<This>> { // F-bounded polymorphism
int f;
boolean isEqual(This that){ // binary method

return this.f == that.f;
} }
class D<This extends D<This>> extends C<This> {

int g;
boolean isEqual(This that){

return super.isEqual(that) && this.g == that.g;
} }
class FixC extends C<FixC> {} // Corresponding to @C
class FixD extends D<FixD> {} // No subtyping btw. @C and @D

Digression: clone() with MyType

• Doesn’t quite work
– This is an (unknown) subtype of C, not vice versa

• One solution is nonheritable methods [I. &
Saito’09], in which
– This is equal to the current class, but
– Every subclass has to override them

9

class C {
This clone() { return new C(); }

}

Today’s Talk

• Review of MyType
• Challenge in programming generic collection

classes
• Self Type Constructors: Extending MyType to

the type constructor level
– …with unpleasant complication(!)

10

Today’s challenge:
map() in generic collection classes

• Bag implements map()
– map() returns the same kind of collection as the receiver

• Set is a subclass of Bag
– Set reuses Bag's implementation as much as possible

• Set prohibits duplicate elements

11

1.2, 2.1, 3.4, 3.5
Bag<Float>

1, 2, 3, 3
Bag<Integer>

.map(floor)

1.2, 2.1, 3.4, 3.5
Set<Float>

1, 2, 3
Set<Integer>

.map(floor)

floor: FloatInteger

Skeletons of Bag and Set classes

12

class Bag<T> {

void add(T t) { ... }

<U> Bag<U> create(){
return new Bag<U>();

}

<U> ? map(TU f) {
? tmp=create();
for(T t: this) tmp.add(f(t));
return tmp;

}
}

class Set<T extends Comparable>
extends Bag<T> {

// overriding to prevent
// duplicate elements
void add(T t) { ... }

<U> Set<U> create(){
return new Set<U>();

}

// no redefinition of map()
}

What is the return
type of map()?

T's bound
is refined

interface Comparable {
int compare(This that);

}

Covariant Refinement of Return Types
is not a Solution

• Set must override map()
• Downcasts would fail at run time if create() were not

overridden in Set

13

class Bag<T> {
<U> Bag<U> map(TU f) { ... }

}

class Set<T> extends Bag<T> {
<U> Set<U> map(TU f) {

return (Set<U>) super.map(f);
} }

MyType and Generics in LOOJ

• The meaning of MyType in a generic class includes
the formal type parameters
– e.g. This in class Bag<T> means Bag<T>

• So, MyType cannot be used for the return type of
map()

14

Today’s Talk

• Review of MyType
• Challenge in programming generic collection

classes
• Self Type Constructors: Extending MyType to

the type constructor level
– …with unpleasant complication(!)

15

Self Type Constructors:
MyType as a Type Constructor

• This means a class name, without type parameters

class Bag<T> {

<U> This<U> create() { ... } // should be nonheritable

<U> This<U> map(TU f) {
This<U> tmp=create();
for(T t: this) tmp.add(f(t));
return tmp;

}
}

16

The meaning of This

This takes one argument

General use case of
Self Type Constructors

• Writing the interface of a generic class that refers to
itself recursively but with different type instantiations
– e.g. collection with flatMap()

17

class Bag<T> {

<U> This<U> flatMap(TThis<U> f) {
This<U> tmp=create();
for(T t: this) tmp.append(f(t));
return tmp;

} }

"this", "is", "high"
Set<String>

't', 'h', 'i', 's', 'g'
Set<Character>

.flatMap(str2char)

str2char:
StringSet<Character>

Today’s Talk

• Review of MyType
• Challenge in programming generic collection

classes
• Self Type Constructors: Extending MyType to

the type constructor level
– …with unpleasant complication(!)

18

Refining bounds can yield
ill-formed types in subclasses

• map() inherited to Set is not safe (ill-kinded)

• So, we should prohibit refinement of bounds
• How can we declare Set, then?

19

class Bag<T> {
<U> This<U> map(TU f) { ... }

}
class Set<T extends Comparable> extends Bag<T> {

// <U> This<U> map(TU f) { ... }
// This<U> is ill-formed here

}

inherited

How the body of map() is typed

• Bag: *→*, T: *, This <: Bag, U: *,
f: T→U, this: This<T>┠ body : This<U>

• If Set is a subtype of Bag, then body will
remain well typed (and can be inherited)

• But, actually, it’s not!
– Set: ∀(X <: Comparable)→*

• Subtype-constrained dependent kind

20

If a type parameter is not included in the
meaning of This, its bound must be fixed

21

T's
range

class Bag<T>

Object

T's
range

class Set<T>

Object

subclassing

undesirable
bound

It is OK to refine bounds in LOOJ

• since the meaning of This includes type parameters
– in other words, This does not take any arguments

22

class Bag<T> {
This map(TT f) { ... } // monomorphic map()

}

class Set<T extends Comparable> extends Bag<T> {
// This map(TT f) { ... }
// This is well formed

}

inherited

How the body of map() is typed

• Bag: *→*, T: *, This <: Bag<T>,
f: T→T, this: This┠ body : This

• Set is not a subtype of Bag, but …
• Set<T> is a subtype of Bag<T> for any type T!

– It’s declared to be so

• So, body remains well-typed when the upper
bound of This is replaced with Set<T>

23

If a type parameter is included in the
meaning of This, its bound can be refined

24

T's
range

class Bag<T>

Object

T's
range

class Set<T extends
Comparable>

Comparable

subclassing

This means Bag<T>

refine

B's
range

Introducing two kinds of type variables
may solve the problem!

25

T's
range

class
Bag<B,T extends B>

Object

class
Set<B extends

Comparable,
T extends B>

Comparable

subclassing

B's
range

T's
range

refine

B B

The meaning of This

Indeed, it solves the problem!
• Bag: ∀(B:*)→∀(T<:B)→*
• Set: ∀(B<:Comparable)→ ∀(T<:B)→*
• B:*, T<:B, This <: Bag, U <:B,

f: T→U, this: This<T>┠ body : This<U>
• Again, Set is not a subtype of Bag, but…
• Set is a subtype of Bag for any B, which

is a subtype of Comparable
• Replacing the bounds for B and This with

subtypes (i.e., Comparable and Set) leads
to what we want

26

Correct Bag and Set classes

27

class Bag<B; T extends B> {
<U extends B> This<U> map(TU f) { ... }

}

class Set<B extends Comparable; T extends B>
extends Bag<B,T> {

// <U extends B> This<U> map(TU f) { ... }
// This<U> is well formed

}

The meaning of This

inherited
This takes one argument

Signature resolution in client code

• This in the return type is replaced with the class
name and refinable-bound params of the receiver

28

Bag<Number,Float> floatbag=... ;
Set<Number,Float> floatset=... ;

Bag<Number,Integer> integerbag=floatbag.map(floor);

Set<Number,Integer> integerset=floatset.map(floor);

= This<U>{U:=Integer}{This:=Bag<Number>}

= This<U>{U:=Integer}{This:=Set<Number>}

Summary of Self Type Constructors

• This in a generic class is a type constructor, which
– takes arguments as many as the number of parameters

before a semicolon
– means a class name with parameters before the semicolon

29

class C<X1, X2, ..., Xn; Y1, Y2, ..., Yn> {

} The meaning
of This

Bounds are refinable Bounds are fixed

FGJstc: A Formal Core Calculus of
Self Type Constructors

• Extension of Featherweight GJ [I., Pierce, Wadler’99] w/
– self type constructors
– exact types
– constructor-polymorphic methods
– exact statements
– and the usual features of FJ family

• Kinding is a bit complicated
• FGJstc enjoys type soundness

– subject reduction theorem
– progress theorem

30

Encoding self type constructors with
higher-order type constructors

• Higher-order type constructors
– Classes can be parameterized by type constructors

• Type declarations become (even) more complicated
– FGJω [Altherr and Cremet. J. Object Technology 08]
– Scala [Moors, Piessens and Odersky. OOPSLA08]

31

Encoding in FGJω

• by combination of
– Higher-order type constructors
– F-bounded polymorphism

• requires fixed point classes

32

class Bag<Bound: *→*, T extends Bound<T>,
This extends λ(X extends Bound<X>).Bag<Bound,X,This>> {

}

class FixBag<Bound<_>, T extends Bound<T>>
extends Bag<Bound,T,FixBag> { }

class Bag<Bound;T extends Bound> {
}

FGJω

Our Solution

Encoding in Scala

• by combination of
– Higher-order type constructors
– Abstract type members [Odersky et al. 03]
– F-bounded polymorphism [Canning et al. 89]

• A type variable appears in its upper bound

33

class Bag<Bound<_>, T extends Bound<T>> {
type Self<X extends Bound<X>> extends Bag<Bound,X>

}

class Bag<Bound;T extends Bound> {
}

Scala in Java-like syntax

Our solution

Scala 2.8.0 β1 (as of Feb., 2010)

• map() takes
– the result type as another type parameter
– A factory object which returns an object of the result type

• Compiler will supply the factory

34

class Bag<T> {
<U, That> That map (TU f, implicit Factory<U,That> fact){ ... }

}
class Set<T> extends Bag<T> {

Set(implicit TComparable<T> c){ ... } //constructor
} Scala in Java-like syntax

-2, 1, 2, -1
Set<Integer>

2, 1
Set<Integer>

2, 1, 2, 1
Bag<Integer>

.map(abs)-2, 1, 2, -1
Bag<Integer>

.map(abs)

IntegerInteger

Static types affect the result

Conclusion

• Self Type Constructors
– for the interface of a generic class that refers to itself

recursively but different type instantiations
– Useful for map(), flatMap(), and so on

• Idea looks simple but more complicated than
expected

35

	Self Type Constructors
	My Research Interests
	Typical Type Systems for�Class-Based Object-Oriented PLs
	Today’s Talk
	MyType in LOOJ [Bruce et al. 04]
	Exact Types to Avoid Unsoundness
	Typing rule for MyType
	“This” is indeed a Polymorphic Type Variable!
	Digression: clone() with MyType
	Today’s Talk
	Today’s challenge:�map() in generic collection classes
	Skeletons of Bag and Set classes
	Covariant Refinement of Return Types �is not a Solution
	MyType and Generics in LOOJ
	Today’s Talk
	Self Type Constructors:�MyType as a Type Constructor
	General use case of �Self Type Constructors
	Today’s Talk
	Refining bounds can yield �ill-formed types in subclasses
	How the body of map() is typed
	If a type parameter is not included in the meaning of This, its bound must be fixed
	It is OK to refine bounds in LOOJ
	How the body of map() is typed
	If a type parameter is included in the meaning of This, its bound can be refined
	Introducing two kinds of type variables may solve the problem!
	Indeed, it solves the problem!
	Correct Bag and Set classes
	Signature resolution in client code
	Summary of Self Type Constructors
	FGJstc: A Formal Core Calculus of �Self Type Constructors
	Encoding self type constructors with higher-order type constructors
	Encoding in FGJω
	Encoding in Scala
	Scala 2.8.0 β1 (as of Feb., 2010)
	Conclusion

