
Environmental Bisimulations for Environmental Bisimulations for
Program Equivalences

Eijiro Sumii
(h k)(Tohoku University)

In collaboration with:
B j i C Pi D id S i iBenjamin C. Pierce, Davide Sangiorgi,
Naoki Kobayashi, and Nobuyuki Sato

Environmental Bisimulations for Environmental Bisimulations for
Program Equivalences

Eijiro Sumii
(h k)(Tohoku University)

In collaboration with:
B j i C Pi D id S i iBenjamin C. Pierce, Davide Sangiorgi,
Naoki Kobayashi, Nobuyuki Sato

What are environmental
bi i l ti ?bisimulations?

A theory for proving equivalences of
programs in various languagesprograms in various languages
(higher-order, in partciular)

Devised for λ-calculus with
encryption [Sumii-Pierce POPL04]yp []

Adapted for polymorphic λ-calculus
[S mii Pi POPL05] untyped λ calculus [Sumii-Pierce POPL05], untyped λ-calculus
with references [Koutavas-Wand POPL06]

d [Sangiorgi-Kobayashi-Sumii LICS07] and
deallocation [Sumii ESOP09], etc.

Thi t lkThis talk

Two instances of environmental
bisimulations forbisimulations, for

I. Polymorphic λ-calculus with
f dreferences [Sumii CSL09], and

II Higher-order π-calculus II. Higher order π calculus
(concurrent language with
message passing) withmessage passing) with
encryption [Sato-Sumii APLAS09]
(if i ll)(if time allows).

Part I: Environmental Bisimulations for Part I: Environmental Bisimulations for
Polymorphic λ-calculus with References

E ti SExecutive Summary

Sound and complete "proof method"
for contextual equivalencefor contextual equivalence
in a language with

h d fHigher-order functions,
First-class references (like ML) andFirst class references (like ML), and
Abstract data types
Caveat: the method is not fully automatic!

– The equivalence is (of course) undecidable in
general

– Still, it successfully proved all known examples

(V) G l M ti ti(Very) General Motivation

1. Equations are important in science
1 + 2 = 3 x + y = y + x E = mc2 – 1 + 2 = 3, x + y = y + x, E = mc2, ...

2. Computing is (should be) a science
3. Therefore, equations are important

in (so-called) computer sciencein (so called) computer science

4. Computing is described by programs
5 Therefore equivalence of programs 5. Therefore, equivalence of programs

is important!

Program Equivalence as
C t t l E i lContextual Equivalence

In general, equations should be
preserved under any contextpreserved under any context
– E.g., x + y = y + x implies (x + y) + z

 () b id i th t t = (y + x) + z by considering the context
[] + z

⇒ Contextual equivalence:
Two programs "give the same result" p g g
under any context

Termination/divergence suffices for the – Termination/divergence suffices for the
"result"

Contextual Equivalence:
D fi itiDefinition

Two programs P and Q are Two programs P and Q are
contextually equivalent if, for any

 context C,
C[P] terminates ⇔ C[Q] terminatesC[P] terminates ⇔ C[Q] terminates

– C[P] (resp. C[Q]) means "filling in" the
"hole" [] of C with P (resp. Q)

Example: Two Implementations
f M t bl I t Li tof Mutable Integer Lists

(* pseudo-code in
imaginary ML-like language *)imaginary ML-like language)

signature S
t p t (* b t t *)type t (* abstract *)
val nil : t
val cons : int → t → t
val setcar : t → int → unit
(* car, cdr, setcdr, etc. *)

endend

Fi t I l t tiFirst Implementation

structure L
type t =type t =
Nil | Cons of (int ref * t ref)

l t il Nillet nil = Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) a = (fst(p) := a)

end
1 2 341 2 34

S d I l t tiSecond Implementation

structure L'
type t = Nil | Cons of (int * t) reftype t = Nil | Cons of (int t) ref
let nil = Nil
l t d C (f(d))let cons a d = Cons(ref(a, d))
let setcar (Cons r) a =

1 2 3

r := (a, snd(!r))
end

1 2 3
4

Th P blThe Problem

The implementations L and L' should be
contextually equivalent under the contextually equivalent under the
interface S

How can we prove it?
 f f l f h Direct proof is infeasible because of the

universal quantification: "for any context C"
Little previous work deals with both
abstract data types and referencesyp
(cf. [Ahmed-Dreyer-Rossberg POPL'09])

– None is complete (to my knowledge)

Our Approach:
E i t l Bi i l tiEnvironmental Bisimulations

Initially devised for λ-calculus with
perfect encryption [Sumii Pierce POPL'04]perfect encryption [Sumii-Pierce POPL 04]

Successfully adapted for
– Polymorphic λ-calculus [Sumii-Pierce POPL'05]

– Untyped λ-calculus withUntyped λ calculus with
references [Koutavas-Wand POPL'06] and
deallocation [Sumii ESOP'09]deallocation [Sumii ESOP 09]

– Higher-order π-calculus
[Sangiorgi Kobayashi Sumii LICS'07][Sangiorgi-Kobayashi-Sumii LICS 07]

– Applied HOπ [Sato-Sumii APLAS'09] etc.

O T t LOur Target Language

Polymorphic λ-calculus with existential
types and first-class referencestypes and first-class references

M ::= ...standard λ-terms... |
|pack (τ, M) as ∃α.σ |

open M as (α, x) in N | locationsp (,) |
ref M | !M | M := N | l | M == N

equality of locations

τ ::= ...standard polymorphic types...
equality of locations

p y p yp
| ∃α.τ | τ ref

E i t l R l tiEnvironmental Relations

An environmental relation X is a set of
tuples of the form:tuples of the form:

(Δ, R, s>M, s'>M', τ)

E i t l R l tiEnvironmental Relations

An environmental relation X is a set of
tuples of the form:tuples of the form:

(Δ, R, s>M, s'>M', τ)
Program M (resp. M') of type τ is running
under store s (resp. s')p
– M and M' (and τ) are omitted when terminated

E i t l R l tiEnvironmental Relations

An environmental relation X is a set of
tuples of the form:tuples of the form:

(Δ, R, s>M, s'>M', τ)
Program M (resp. M') of type τ is running
under store s (resp. s')p
– M and M' (and τ) are omitted when terminated
R is the environment: a (typed) relation R is the environment: a (typed) relation
between values known to the context

E i t l R l tiEnvironmental Relations

An environmental relation X is a set of
tuples of the form:tuples of the form:

(Δ, R, s>M, s'>M', τ)
Program M (resp. M') of type τ is running
under store s (resp. s')p
– M and M' (and τ) are omitted when terminated
R is the environment: a (typed) relation R is the environment: a (typed) relation
between values known to the context
Δ maps an abstract type to (the pair of) Δ maps an abstract type α to (the pair of)
their concrete types σ and σ'

Environmental Bisimulations for
O C l lOur Calculus

An environmental relation X is an
environmental bisimulation if it is environmental bisimulation if it is
preserved by

 f h dexecution of the programs and
operations from the contextoperations from the context

Formalized by the following conditions...

Environmental Bisimulations:
C diti f R d tiCondition for Reduction

If (Δ, R, s>M, s'>M', τ) ∈ X and
s>M converges to t>V thens>M converges to t>V, then
s'>M' also converges to some t'>V'
ith (Δ R {(V V')} t t') Xwith (Δ, R∪{(V,V',τ)}, t, t') ∈ X

(Symmetric condition omitted)

Strictly speaking, this is a "big-step"
version of environmental bisimulations

Environmental Bisimulations:
C diti f O iCondition for Opening

If (Δ, R, s, s') ∈ X and
(pack (τ V) as ∃α σ(pack (τ,V) as ∃α.σ,
(pack (τ',V') as ∃α.σ, ∃α.σ) ∈ R, then
(Δ {(')} R {(V V')} ') X(Δ∪{(α,τ,τ')}, R∪{(V,V',σ)}, s, s') ∈ X

Environmental Bisimulations:
C diti f D fCondition for Dereference

If (Δ, R, s, s') ∈ X and
(l (l' σ ref) ∈ R then(l,(l , σ ref) ∈ R, then
(Δ, R∪{(s(l),s'(l'),σ)}, s, s') ∈ X

Environmental Bisimulations:
C diti f U d tCondition for Update

If (Δ, R, s, s') ∈ X and
(l (l' σ ref) ∈ R then(l,(l , σ ref) ∈ R, then
(Δ, R, s{laW}, s'{l'aW'}) ∈ X
f W d W' th i d f m Rfor any W and W' synthesized from R
– Formally,

W = C[V1,...,Vn]
W' = C[V'1 V']W = C[V 1,...,V n]

for some (V1,V'1,τ1),...,(Vn,V'n,τn) ∈ R
and some well typed Cand some well-typed C

Environmental Bisimulations:
C diti f A li tiCondition for Application

If (Δ, R, s, s') ∈ X and
(λx M (λx M' σ→τ) ∈ R then(λx.M,(λx.M , σ→τ) ∈ R, then
(Δ, R, s>[W/x]M, s'>[W'/x]M', τ) ∈ X
f W d W' th i d f m Rfor any W and W' synthesized from R

Oth C ditiOther Conditions

Similar conditions for allocation,
location equality projection etclocation equality, projection, etc.
No condition for values of abstract
types

If (Δ R s s') ∈ XIf (Δ, R, s, s) ∈ X
and (V,(V', α) ∈ R,

then ?then ...?
– Context cannot operate on them

Abstract

Mutable Integer Lists
I t f (R i d)Interface (Reminder)

(* pseudo-code in
imaginary ML-like language *)imaginary ML-like language)

signature S
t p t (* b t t *)type t (* abstract *)
val nil : t
val cons : int -> t -> t
val setcar : t -> int -> unit
(* setcdr, car, cdr, etc. *)

endend

First Implementation
(R i d)(Reminder)

structure L
type t =type t =
Nil | Cons of (int ref * t ref)

l t il Nillet nil = Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) a = (fst(p) := a)

end
1 2 341 2 34

Second Implementation
(R i d)(Reminder)

structure L'
type t = Nil | Cons of (int * t) reftype t = Nil | Cons of (int t) ref
let nil = Nil
l t d C (f(d))let cons a d = Cons(ref(a, d))
let setcar (Cons r) a =

1 2 3

r := (a, snd(!r))
end

1 2 3
4

Environmental Bisimulaton for
Th M t bl I t Li tThe Mutable Integer Lists

X = { (Δ, R, s, s') |
Δ = { (S.t, L.t, L'.t) }, { (S.t, L.t, L .t) },
R = { (L, L', S),

(L.nil, L'.nil, S.t),(L. , L . , .),
(L.cons, L'.cons, int→S.t→S.t),
(L.setcar, L'.setcar, S.t→int→unit),(L. , L . , .),
(L.Cons(li,mi), L'.Cons(l'i), S.t)
(L.Nil, L'.Nil, S.t) | i = 1, 2, 3, ..., n },(, ,) | , , , , },

s(li) = fst(s'(l'i)) and
(s(mi), snd(s'(l'i)), S.t) ∈ R, for each i }((i), ((i)),) , f }

More complicated example
(1/3)(1/3)

(* Adapted from [Ahmed-Dreyer-Rossberg
POPL'09], credited to Thamsborg *)O L 9], cr t to hams org)

pack (int ref, (ref 1, λx.Vx)) as σ
vs pack (int ref (ref 1 λx V')) as σvs. pack (int ref, (ref 1, λx.V)) as σ
where

V = λf (x:=0; f(); x:=1; f(); !x)Vx = λf. (x:=0; f(); x:=1; f(); !x)
V' = λf. (f(); f(); 1)
σ = ∃α α × (α→(1→1)→int)σ = ∃α. α × (α→(1→1)→int)

f is supplied by the context
What are the reducts of V f and V' f?

More complicated example
(2/3)(2/3)

X = X0 ∪ X1

X0 = { (Δ, R, t{la0}>N, t'>N', int) |0 { ({ })
N and N' are made of contexts in T0,
with holes filled with elements of R }with holes filled with elements of R }

X1 = { (Δ, R, t{la1}>N, t'>N', int) |
N d N' d f t t i T N and N' are made of contexts in T1,
with holes filled with elements of R }

More complicated example
(3/3)(3/3)

(C; l:=1; D; !l) T0 (C; D; 1)
(D; !l) T1 (D; 1)() 1 ()
If E[zW] T0 E'[zW], then
E[C; l:=1; D; !l] T0 E'[C; D; 1]E[C; l: 1; D; !l] T0 E [C; D; 1]
(for any evaluation contexts E and E')
If E[zW] T E'[zW] then E[D; !l] TIf E[zW] T0 E [zW], then E[D; !l] T1
E'[D; 1]
If E[W] T E'[W] thIf E[zW] T1 E'[zW], then
E[C; l:=1; D; !l] T0 E'[C; D; 1]

 E E h E !If E[zW] T1 E'[zW], then E[D; !l] T1
E'[D; 1]

Main Theorem:
S d d C l tSoundness and Completeness

The largest environmental bisimulation The largest environmental bisimulation ~
coincides with (a generalized form of)
contextual equivalence ≡

Proof
S d : P i p d d t xt Soundness: Prove ~ is preserved under any context
(by induction on the context)
Completeness: Prove ≡ is an environmental Completeness: Prove ≡ is an environmental
bisimulation (by checking its conditions)

Th C tThe Caveat

Our "proof method" is not automaticOur "proof method" is not automatic

Contextual equivalence in our
language is undecidablelanguage is undecidable
Therefore, so is environmental
bisimilarity

...but it proved all known examples!

U T T h iUp-To Techniques

Variants of environmental bisimulations
with weaker (yet sound) conditionswith weaker (yet sound) conditions

Up-to reduction (and renaming)
Up to context (and environment)Up-to context (and environment)
Up-to allocation

Details in my CSL'09 paperDetails in my CSL 09 paper

R l t d W kRelated Work

Environmental bisimulations for other
languages (already mentioned)languages (already mentioned)
Bisimulations for other languages
Logical relations
Game semanticsGame semantics

None has dealt with both abstract
data types and references
– Except [Ahmed-Dreyer-Rossberg POPL'09]Except [Ahmed Dreyer Rossberg POPL 09]

Could not prove some interesting examples

C l i f P t IConclusion of Part I

Summary:
Sound and complete "proof method" Sound and complete proof method
for contextual equivalence in

l hi λ l l ith polymorphic λ-calculus with
existential types and references

Current and future work:Current and future work:
– Parametricity properties
("f h ")("free theorems")

– Semantic model

Part II: Enviromental bisimulations
for higher-order π-calculus
with encryptionwith encryption

Nobuyuki SatoNobuyuki Sato
Eijiro Sumii
(h k)(Tohoku University)

A d f P t IIAgenda of Part II

Informal overview of the work
A little technical detailsA little technical details
A little more technical details
Conclusion

M i R ltMain Result

A bi i l ti f t h iA bisimulation proof technique
for higher-order process calculusg p

with cryptographic primitives

– Can be used for proving security p g y
properties of concurrent systems
that send/receive programs using that send/receive programs using
encryption/decryption

M ti tiMotivation

Higher-order cryptographic systemsg yp g p y
are now ubiquitous

W b b d il li t (G il)– Web-based e-mail clients (e.g. Gmail)
– Software update systems (e.g. Windows Update)

Higher-order: transmitting programs themselves

⇒ Security is even more important ⇒ Security is even more important
than in first-order systems
• Cryptography is essential

P blProblem

The theory ofThe theory of
higher-order cryptographic

 d d l dcomputation is underdeveloped

Little work for the combination of
higher-order processes andhigher order processes and
cryptographic primitives
Cf Higher-order pi-calculus (no cryptography) Cf. Higher-order pi-calculus (no cryptography),

spi-calculus (first-order), ...

A Challenge of Higher-Order
C t hi PCryptographic Processes

Consider the process P =⎯c〈Q〉
where Q =⎯c〈encrypt(m k)〉where Q = c〈encrypt(m,k)〉
⎯c〈 〉 denotes output to the network c
Assume c is public and k is secret

Does P leak m?Does leak m?
1. Yes, because the attacker can receive
Q from c and extract mQ from c and extract m

2. No, if m is encrypted before Q is
sent to csent to c

Ob tiObservations

Computation (e.g. encryption) and
computed values (e g ciphertext) computed values (e.g. ciphertext)
must be distinguished
h k h ld l The attacker should be able to

decompose transmitted processes p p
(but not computed values)

(Recall the previous example P =⎯c〈Q〉p p
where Q =⎯c〈encrypt(m,k)〉)

S l tiSolution

Syntactically distinguish
computation (e g encrypt(m k)) andcomputation (e.g. encrypt(m,k)) and
computed values (e.g. ^encrypt(m,k))
E d h l l h Extend the calculus with a primitive
to decompose transmitted processes:p p

match P as x in Q
(bi d t th d d b t t (bind x to the decomposed abstract

syntax tree of P and execute Q)y
– Computed values can not be decomposed

E lExamples

⎯c〈⎯c〈encrypt(m,k)〉 〉 |
c(X) match X as y in Rc(X).match X as y in R

→ match⎯c〈encrypt(m,k)〉 as y in R
→ [Out(Nam c,Enc(Nam m,Nam k))/y]R

⎯c〈⎯c〈^encrypt(m,k)〉 〉 |
c(X).match X as y in R

→ match⎯c〈^encrypt(m k)〉 as y in R→ match c〈 encrypt(m,k)〉 as y in R
→ [Out(Nam c,Val ^encrypt(m,k))/y]R

N t Ch llNext Challenge

How do we reason about
higher-order cryptographic processes?

Traditional techniques (bisimulations,
in particular) do not applyin particular) do not apply
– Most of them are first-order
N l bi i l ti [S i i 92] – Normal bisimulations [Sangiorgi 92] are
unsound for process decomposition

Because they only transmit "triggers"
(i.e. pointers to processes)

S l tiSolution

Ad t i t l bi i l tiAdopt environmental bisimulations

Devised for λ-calculus with
i [S ii Pi 04]encryption [Sumii-Pierce 04]

Adapted for various languages Adapted for various languages
[Sumii-Pierce, Koutavas-Wand, ...]

Including higher order pi calculus – Including higher-order pi-calculus
[Sangiorgi-Kobayashi-Sumii 07]

Idea of
E i t l Bi i l tiEnvironmental Bisimulations

Traditional (i.e. non-environmental)
bisimulation P ∼ P' means:b s mulat on means

P and P' behave the same
under any observer processunder any observer process

Environmental bisimulation P ∼E P' means:
P d P' b h th P and P' behave the same
under any observer process

th t l t (V V') f Ethat uses any elements (V,V') of E
– E is a binary relation on values

th t t th b ' k l dthat represents the observer's knowledge
(called an environment)

A d f P t IIAgenda of Part II

Informal overview of the work
A little technical detailsA little technical details
A little more technical details
Conclusion

Our Environmental Bisimulations
(1/3)(1/3)

Binary relation X on processes,
indexed by environments E,n y n ronm nts E,
is an environmental simulation
if P XE P' implies:f XE mp

1. If P reduces to Q, then
P' reduces to some Q'P reduces to some Q
such that Q XE Q'

2 If P outputs V and becomes Q then2. If P outputs V and becomes Q, then
P' outputs some V' and becomes some Q'
such that Q X Q'such that Q XE∪{(V,V')} Q

(cont.)

Our Environmental Bisimulations
(2/3)(2/3)

X is an environmental simulation
if P XE P' implies:f XE mp s

3. For any V and V' composed from E,
if P inputs V and becomes Q thenif P inputs V and becomes Q, then
P' inputs V' and becomes some Q'
such that Q XE Q'such that Q XE Q
– "Composed from" means

for some context C and (V1 V1') (Vn Vn')∈Efor some context C and (V1,V1),...,(Vn,Vn)∈E,
V = C[V1,...,Vn] and V' = C[V1',...,Vn']

4 P|Q XE P'|Q' for any (Q Q')∈E4. P|Q XE P |Q for any (Q,Q)∈E
(cont.)

Our Environmental Bisimulations
(3/3)(3/3)

X is an environmental simulation
if P XE P' implies:f XE mp s

5. P XE∪{(V,V')} P' if V and V' can be
computed from E (by decomposition or computed from E (by decomposition or
first-order computation)
E g suppose:E.g. suppose:

E = {(k,k'), (^encrypt(V,k),^encrypt(V',k'))}
Then (V V') can be computed from EThen (V,V) can be computed from E

by the first-order context:
C = decrypt([]2 []1)C = decrypt([]2,[]1)

6. E preserves equality

M i ThMain Theorem

The largest environmental bisimulation g
(with appropriate E) coincides with
reduction-closed barbed equivalenceq

– It exists because the generating
function is monotone [Tarski 55]function is monotone [Tarski 55]

The ⊆ direction is proved viaThe ⊆ direction is proved via
a context closure property of
environmental bisimulations
The ⊇ direction is proved by coinduction

A d f P t IIAgenda of Part II

Informal overview of the work
A little technical detailsA little technical details
A little more technical details
Conclusion

O C l l S t f TOur Calculus: Syntax of Terms

M ::= terms
V valuesV values
x variables
M(M M) mp t tiM(M1,...,Mn) computations

V ::= values
a names
f function symbolsf function symbols
^f(V1,...,Vn) computed values
`P transmitted processesP transmitted processes
`M transmitted terms

S t f PSyntax of Processes

P ::= processes
0 inaction0 inaction
M(x).P input
⎯M〈N〉 P t tM〈N〉.P output
P|Q parallel composition
!P replication
νx.P restriction
run(M) execution
if M=N then P else Q conditionalif M=N then P else Q conditional
match M as x in P decomposition

L b l d T iti S tiLabeled Transition Semantics

Parameterized by semantics of terms
Defined by (strongly normalizing and – Defined by (strongly normalizing and
confluent) term rewriting system

K lKey rules:

⎯c〈M〉 P → P
⎯c〈V〉

c〈M〉.P → P
if M rewrites to V ("call-by-value")

τrun(`P) → P (important!)
match `P as x in Q → [M/x]Q

τ
τmatch P as x in Q → [M/x]Q

where M is decomposed AST of P

E l (R i it d)Examples (Revisited)

⎯c〈 `⎯c〈encrypt(m,k)〉 〉 |
c(X) match X as y in Rc(X).match X as y in R

→ match `⎯c〈encrypt(m,k)〉 as y in R
→ [Out(Nam c,Enc(Nam m,Nam k))/y]R

⎯c〈 `⎯c〈^encrypt(m,k)〉 〉 |
c(X).match X as y in R

→ match `⎯c〈^encrypt(m k)〉 as y in R→ match c〈 encrypt(m,k)〉 as y in R
→ [Out(Nam c,Val ^encrypt(m,k))/y]R

Bi i l ti E lBisimulation Example

P =⎯c〈 `⎯c〈^encrypt(3,k)〉 〉 and
P' =⎯c〈 `⎯c〈^encrypt(7 k)〉 〉P = c〈 c〈 encrypt(7,k)〉 〉

are bisimilar

Proof outline: Take X as follows (so P XE P')
X = { (E C[^encrypt(3 k)] C[^encrypt(7 k)]) |X = { (E, C[encrypt(3,k)], C[encrypt(7,k)]) |

k not free in C }
E = { (D[^encrypt(3 k)] D[^encrypt(7 k)]) |E = { (D[encrypt(3,k)], D[encrypt(7,k)]) |

k not free in D }
and prove it to be an env bisimand prove it to be an env. bisim.
(by case analysis on C and D)

N Bi i l ti E lNon-Bisimulation Example

P =⎯c〈 `⎯c〈encrypt(3,k)〉 〉 and
P' =⎯c〈 `⎯c〈encrypt(7 k)〉 〉 areP = c〈 c〈encrypt(7,k)〉 〉 are

not bisimilar
P f liProof outline:
If P XE P' for some env. bisim. X and E,E

then by output we get 0 XE' 0 with
(`⎯c〈encrypt(3,k)〉,`⎯c〈encrypt(7,k)〉)∈E'.yp yp

Since (3,7) can be computed from E' by
decomposition, we get 0 XE'' 0 with mp n, w g XE w
(3,7)∈E'', which violates integer equality.

Simplification by
U T C t t T h iUp-To Context Technique

Problem:
Many environmental bisimulations include Many n ronm nta s mu at ons nc u
all processes/values of the forms
C[V1,...,Vn] and C[V1',...,Vn'][V1,...,Vn] [V1 ,...,Vn]
for some (V1,V1'),...,(Vn,Vn')

Solution:Solution:
A "smaller" version of environmental
bisimulations where processes/values of bisimulations, where processes/values of
the forms C[V1,...,Vn] and C[V1',...,Vn']
can be omitted if (V1 V1') (V V ') are can be omitted if (V1,V1),...,(Vn,Vn) are
included

Example of Environmental
Bi i l ti U T C t tBisimulation Up-To Context

Consider again:
P ⎯c〈 `⎯c〈^encrypt(3 k)〉 〉P = c〈 c〈 encrypt(3,k)〉 〉
P' =⎯c〈 `⎯c〈^encrypt(7,k)〉 〉〈 〈 yp ()〉 〉

Then
Y { (E P P') }Y = { (E, P, P') }

is an environmental bisimulation
up-to context, where:

E = {(c c) (^encrypt(3 k) ^encrypt(7 k))}E = {(c,c), (encrypt(3,k), encrypt(7,k))}

I APLAS'09 In our APLAS'09 paper

Formal definitions of the calculus
and our environmental bisimulationsand our environmental bisimulations
(and the up-to context technique)

d d l fSoundness and completeness proofs
(i.e. proof of coincidence with(p
reduction-closed barbed equivalence)
More sophisticated examplesMore sophisticated examples
– Software distribution system
– Online e-mail client

A d f P t IIAgenda of Part II

Informal overview of the work
A little technical detailsA little technical details
A little more technical details
Conclusion

C l i f P t IIConclusions of Part II

Higher-order cryptographic processes
are non-trivialare non-trivial
– Previous theories do not apply
(hi h d i l l i l l) (higher-order pi-calculus, spi-calculus, …)

Environmental bisimulations "scale" well
to such sophisticated calculi
– Including the present oneIncluding the present one

Future work:Future work
automation, extension, simplification, …

Sources of
Di i /C tDiscussion/Controversy

Relationship to denotational
semantics (especially games)semantics (especially, games)
– Denotational semantics is "syntax-free"
– Env. bisim. is "semantics-free"

Very robust, but (arguably) ugly,
lacking good mathematical structure

⇒ More structured and robust framework?

(Semi-)automation/mechanization
– What does "completeness" mean when What does completeness mean when
the problem is undecidable?

