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Environmental Bisimulations for
Program Equivalences

Eijiro Sumii
(Tohoku University)

In collaboration with:
Benjamin C. Pierce, Davide Sangiorgi,
Naoki Kobayashi, Nobuyuki Sato



What are environmental
bisimulations?

A theory for proving equivalences of
programs in various languages
(higher-order, in partciular)

e Devised for A-calculus with
encryption [Sumii-Pierce POPLO4]

e Adapted for polymorphic A-calculus
[Sumii-Pierce POPLO5], untyped A-calculus
with references [Koutavas-Wand POPLO6}
[Sangiorgi-Kobayashi-Sumii LICS07] and
deallocation [sumii ESOP09], etc.




This talk

Two instances of environmental
bisimulations, for

Polymorphic A-calculus with
references [Sumii csL09], and

. Higher-order n-calculus
(concurrent language with
message passing) with
encryption [Sato-Sumii APLAS09]
(if time allows).

o

-~
-~



Part I: Environmental Bisimulations for
Polymorphic A-calculus with References



Executive Summary

Sound and complete “proof method"
for contextual equivalence
in a language with

e Higher-order functions,

e First-class references (like ML), an

Q.

e Abstract data types

Caveat: the method is not fully automaticl

- The equivalence is (of course) undecidable in
general

- Still, it successfully proved all known examples




(Very) General Motivation

1.

Equations are important in science
1+2=3,x+y=y+x, E=mc? ...

. Computing is (should be) a science
. Therefore, equations are important

in (so-called) computer science

Computing is described by programs

Therefore, equivalence of programs
is important!



Program Equivalence as
Contextual Equivalence

In general, equations should be
preserved under any context
-E.g.., x+y=y + x implies (x +y) + z
= (y + x) + z by considering the context
[]1+2z
= Contextual equivalence:
Two programs "give the same result"
under any context

- Termination/divergence suffices for the
"result"




Contextual Equivalence:
Definition

Two programs P and Q are
contextually equivalent if, for any
context C,

C[P] terminates < C[Q] terminates

- C[P] (resp. C[Q]) means "filling in" the
"hole" [ ] of C with P (resp. Q)




Example: Two Implementations
of Mutable Integer Lists

(* pseudo-code in

imaginary ML-like language *)
sighature S

type t (* abstract *)

val nil : t

val cons : int >t > ¢t

val setcar : + — int — unit

(* car, cdr, setcdr, etc. *)
end




First Implementation

structure L
type t =
Nil | Cons of (int ref * t ref)
let nil = Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) a = (fst(p) := a)

QI e




Second Implementation

structure L'
type t = Nil | Cons of (int * t) ref
let nil = Nil
let cons a d = Cons(ref(a, d))
let setcar (Cons r) a =

r := (a, snd(ir))

d\éﬁ\% N




The Problem

The implementations L and L' should be
contextually equivalent under the
interface S

How can we prove it?

e Direct proof is infeasible because of the
universal quantification: "for any context C"

o Little previous work deals with both

abstract data types and references
(cf. [Ahmed-Dreyer-Rossberg POPL'09])

- None is complete (to my knowledge)




Our Approach:
Environmental Bisimulations

e Initially devised for A-calculus with
perfect encryption [sumii-pierce POPL'04]

e Successfully adapted for

- Polymorphic A-calculus [sumii-Pierce POPL'05]
- Untyped A-calculus with

references [Koutavas-Wand POPL'06] and
deallocation [sumii Esor'09]

- Higher-order n-calculus
[Sangiorgi-Kobayashi-Sumii LICS'07]

- Applied HOT [sato-sumii aAPLAS'09]  etcC.




Our Target Language

Polymorphic A-calculus with existential
types and first-class references

M ::= ...standard A-terms... |
pack (t, M) as Ja.c |
open M as (a, x) in N |~ [locations

refMI!MIM:=NI€IAy=

equality of locations

T :i= ...standard polymorphic types...
| Ja.t | 1 ref




Environmental Relations

An environmental relation X is a set of
tuples of the form:

(A, R, s>M, s'>M’', 1)




Environmental Relations

An environmental relation X is a set of
tuples of the form:
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e Program M (resp. M') of type t is running
under store s (resp. s')

- M and M' (and t) are omitted when terminated
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e Program M (resp. M') of type t is running
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Environmental Relations

An environmental relation X is a set of
tuples of the form:

(A, R, s>M, s'>M’', 1)
e Program M (resp. M') of type t is running
under store s (resp. s')
- M and M' (and t) are omitted when terminated

e R is the environment: a (typed) relation
between values known to the context

e A maps an abstract type o to (the pair of)
their concrete types ¢ and c'




Environmental Bisimulations for
Our Calculus

An environmental relation X is an
environmental bisimulation if it is
preserved by

e execution of the programs and

e operations from the context

Formalized by the following conditions...



Environmental Bisimulations:
Condition for Reduction

o If (A, R, s>M, s'>M', 1) € X and
s>M converges to 1>V, then
s'>M' also converges to some t'>V'

with (A, RU{(V,V',7)}, T, t') e X
(Symmetric condition omitted)

Strictly speaking, this is a "big-step"
version of environmental bisimulations




Environmental Bisimulations:
Condition for Opening

oIf (A, R, s, s') e Xand
(pack (t,V) as Ja.o,
pack (t',V') as Ja.oc, Ja.c) € R, then
(AA(a,7,t")}, RA(V,V',0)}, s, s') e X




Environmental Bisimulations:
Condition for Dereference

oIf (A, R, s, s') e Xand
(¢, ', o ref) e R, then
(A, RUA(s(4),s'(4'),0)}, s, s') e X




Environmental Bisimulations:
Condition for Update

oIf (A\,R, s, s') e Xand
(¢, ', o ref) e R, then
(A, R, s{/—>W}, s'{¢'>W'}) € X
for any W and W' synthesized from R
- Formally,

W = C[V1 ..... Vn]
W' = C[V'l ..... V'n]

for some (V,,V'y,79)..... v,.V'..t) € R
and some well-typed C




Environmental Bisimulations:
Condition for Application

oIf (A, R, s, s') e Xand
(Ax.M, A x.M', o—>1) € R, then
(A, R, s>[W/xIM, s'>[W'/xIM', ©) € X
for any W and W' synthesized from R




Other Conditions

e Similar conditions for allocation,
location equality, projection, etc.

e No condition for values of abstract
types

and ({, W, &) € R,

‘ Abstract

- Context cannot operate on them




Mutable Integer Lists
Interface (Reminder)

(* pseudo-code in

imaginary ML-like language *)
sighature S

type t (* abstract *)

val nil : t

val cons : int -> + -> ¢

val setcar : + -> int -> unit

(* setcdr, car, cdr, etc. *)
end




First Implementation
(Reminder)

structure L
type t =
Nil | Cons of (int ref * t ref)
let nil = Nil
let cons a d = Cons(ref a, ref d)
let setcar (Cons p) a = (fst(p) := a)

QI e




Second Implementation
(Reminder)

structure L'
type t = Nil | Cons of (int * t) ref
let nil = Nil
let cons a d = Cons(ref(a, d))
let setcar (Cons r) a =

r := (a, snd(ir))

d\éﬁ% N




Environmental Bisimulaton for
The Mutable Integer Lists

X = {(A R, s, s') |

A {(5.1, L.t, L'.1)},

R = {(L, L' S9),
(L.nil, L'.nil, S.1),
(L.cons, L'.cons, int>5S5.1t5S.1),
(L.setcar, L'.setcar, S.t—int—unit),
(L.Cons(4;,m;), L'.Cons(¢'), S.1)
(L.Nil, L'.Nil, s.t)|i=1,2,3, ...,n},

s(¢) = fst(s'(¢'.))) and

(s(m;), snd(s'(¢')), S.t) € R, for each i }




. More complicated example
(1/3)

(* Adapted from [Ahmed-Dreyer-Rossberg
POPL'09], credited to Thamsborg *)

pack (int ref, (ref 1, Ax.V,)) as ©
vs. pack (int ref, (ref 1, Ax.V')) as ©
where
V., M. (x:=0; f(): x:=1. £(); Ix)
A AMf. (FQ. fO: 1)
c = Ja. a x (a=>(1-1)—int)
e f is supplied by the context
e What are the reducts of V f and V' f?




More complicated example
(2/3)

X = XOUXI

Xo = { (A, R, t{/—0}>N, t'>N', int) |
N and N' are made of contexts in T,
with holes filled with elements of R }

X; = {(A R, t{/—>1}>N, t'>N', int) |
N and N' are made of contexts in T,,
with holes filled with elements of R }



More complicated example
(3/3)

o (C; 0:=1;D; )Ty (C: D; 1)
o (D: V)T, (D: 1)
o If E[zW] T, E'[zW], then
E[C: ¢:=1; D; /] T, E'[C; D; 1]
(for any evaluation contexts E and E')
o If E[zW] T, E'[zW], then E[D: /] T,
E'[D; 1]
o If E[zW] T, E'[zW], then
E[C: ¢:=1; D; /] T, E'[C. D; 1]
o If E[zZW] T, E'[zW], then E[D; /] T,
E'[D; 1]



Main Theorem:
Soundness and Completeness

The largest environmental bisimulation ~
coincides with (a generalized form of)
contextual equivalence =

Proof

e Soundness: Prove ~ is preserved under any context
(by induction on the context)

e Completeness: Prove = is an environmental
bisimulation (by checking its conditions)



The Caveat

Our "proof method" is not automatic

e Contextual equivalence in our
'AMAIIAAA :- llnAAA:AAk'A
luuyuugc I WIIUCLIUUWVIC

e Therefore, so is environmental
bisimilarity

...but it proved all known examples!




Up-To Techniques

Variants of environmental bisimulations
with weaker (yet sound) conditions

e Up-to reduction (and renaming)

l)on dbm mmsadawd famad Amesisnmasnsen =on 4\
o UlJ"'lU CUIIICA ] \U"U CSIivil Ullll\Clll}

e Up-to allocation

Details in my CSL'0O9 paper



Related Work

e Environmental bisimulations for other
languages (already mentioned)

e Bisimulations for other languages
e Logical relations

’_. ﬂﬂﬂﬂﬂﬂﬂﬂ *:Aﬂ
® Odme semaniics

None has dealt with both abstract
data types and references
- Except [Ahmed-Dreyer-Rossberg POPL'09]



Conclusion of Part I

Summary:
Sound and complete "proof method"
for contextual equivalence in
polymorphic A-calculus with
existential types and references

Current and future work:

- Parametricity properties
("free theorems")

- Semantic model



Part IT: Enviromental bisimulations
for higher-order n-calculus
with encryption

Nobuyuki Sato
Eijiro Sumii
(Tohoku University)



Agenda of Part II

e Informal overview of the work
e A little technical details

e A little more technical details
e Conclusion




Main Result

A bisimulation proof technique
for higher-order process calculus
with cryptographic primitives

- Can be used for proving security
properties of concurrent systems
that send/receive programs using
encryption/decryption




Motivation

Higher-order cryptographic systems
are now ubiquitous

- Web-based e-mail clients (e.g. Gmail)
- Software update systems (e.g. Windows Update)

Higher-order: transmitting programs themselves

— Security is even more important
than in first-order systems

- Cryptography is essential




Problem

The theory of
higher-order cryptographic
computation is underdeveloped

o Little work for the combination of
higher-order processes and
cryptographic primitives
Cf. Higher-order pi-calculus (no cryptography),

spi-calculus (first-order), ...




A Challenge of Higher-Order
Cryptographic Processes

e Consider the process P = ¢c(Q)
where Q = c(encrypt(m,k))
m ¢( ) denotes output to the network c
m Assume c is public and k is secret

e Does P leak m?

1. Yes, because the attacker can receive
Q from c and extract m

2. No, if m is encrypted before Q is
sent to c




Observations

e Computation (e.g. encryption) and
computed values (e.g. ciphertext)
must be distinguished

e The attacker should be able to
decompose transmitted processes
(but not computed values)

(Recall the previous example P = c(Q)
where Q = c{encrypt(m,k)))



Solution

e Syntactically distinguish
computation (e.g. encrypt(m, k)) and
computed values (e.g. “encrypt(m,k))

e Extend the calculus with a primitive
to decompose transmitted processes:

match P as x in Q

(bind x to the decomposed abstract
syntax tree of P and execute Q)

- Computed values can not be decomposed




Examples

¢{ c(encrypt(m,k)) ) |
c(X).match X as y in R

— match c(encrypt(m, k)) as y in R
— [Out(Nam c,Enc(Nam m,Nam k))/y]R

¢{ c("encrypt(m,k)) ) |
c(X).match X as y in R

— match ¢("encrypt(m,k)) as y in R
— [Out(Nam c,Val “encrypt(m,k))/y]R




Next Challenge

How do we reason about
higher-order cryptographic processes?

e Traditional techniques (bisimulations,
in particular) do not apply

- Most of them are first-order

- Normal bisimulations [Sangiorgi 92] are
unsound for process decomposition

e Because they only transmit "triggers"
(i.e. pointers to processes)




Solution

Adopt environmental bisimulations

e Devised for A-calculus with
encryption [Sumii-Pierce 04]

e Adapted for various languages
[Sumii-Pierce, Koutavas-Wand, ...]

- Including higher-order pi-calculus
[Sangiorgi-Kobayashi-Sumii 07]




Idea of
Environmental Bisimulations

e Traditional (i.e. non-environmental)
bisimulation P ~ P' means:

P and P' behave the same
under any observer process

e Environmental bisimulation P ~¢ P' means:

P and P' behave the same
under any observer process
that uses any elements (V,V') of E

- E is a binary relation on values
that represents the observer's knowledge
(called an environment)




Agenda of Part II

e Informal overview of the work
e A little technical details

e A little more technical details
e Conclusion




Our Environmental Bisimulations
(1/3)

Binary relation X on processes,
indexed by environments E,
is an environmental simulation
if P Xg P' implies:

1. If P reduces to Q, then

P' reduces to some Q'
such that Q X Q'

2. If P outputs V and becomes Q, then
P' outputs some V' and becomes some Q'
such that Q Xg vy Q

(cont.)




Our Environmental Bisimulations
(2/3)

X is an environmental simulation
if P Xg P' implies:

3.For any V and V' composed from E,
if P inputs V and becomes Q, then
P' inputs V' and becomes some Q'
such that Q X Q'

- "Composed from" means
for some context C and (V,,V,')..... (v,.V,")eE,
V =C[V,...., V,] and V' = C[V,',..., V,']

4.PIQ Xg P'|Q" for any (Q,Q"')<cE

(cont.)




Our Environmental Bisimulations
(3/3)

X is an environmental simulation
if P Xg P' implies:

5. P XEU{(V,V')} P if V and V' can be
computed from E (by decomposition or
first-order computation)

E.g. suppose:
E = {(k.k'), ("encrypt(V, k), “encrypt(V', k'))}

Then (V,V') can be computed from E
by the first-order context:

C = decrypt([l..[],)
6. E preserves equality




Main Theorem

The largest environmental bisimulation
(with appropriate E) coincides with
reduction-closed barbed equivalence

- It exists because the generating
function is monotone [Tarski 55]

e The c direction is proved via
a context closure property of
environmental bisimulations

e The o direction is proved by coinduction




Agenda of Part II

e Informal overview of the work
e A little technical details

o A little more technical details
e Conclusion




Our Calculus: Syntax of Terms

M ::= terms
"/ values
X variables
M(M,,....M,) computations
V= values
a names
f function symbols
“f(V,,....V,) computed values
P transmitted processes

"M transmitted terms



Syntax of Processes

P::= processes
0 inaction
M(x).P input
M(N).P output
PIQ parallel composition
IP replication
vx.P restriction
run(M) execution

if M=N then P else Q conditional
match M as x in P decomposition



Labeled Transition Semantics

e Parameterized by semantics of terms

- Defined by (strongly normalizing and
confluent) term rewriting system

o Key rules:
~/AA\ D C<V> D
ciw.Pp — P
if M rewrites to V (“call-by-value")
run(CP) > P (important!)

match ‘P as x inQ - [M/x]Q
where M is decomposed AST of P



Examples (Revisited)

c( * c(encrypt(m,k) ) |
c(X).match X as y in R

— match ° c(encrypt(m,k)) as y in R
— [Out(Nam c,Enc(Nam m,Nam k))/y]R

c( ° c("encrypt(m,k)) ) |
c(X).match X as y in R

— match ° c("encrypt(m,k)) as y in R
— [Out(Nam c,Val “encrypt(m,k))/y]IR




Bisimulation Example

P=1c( " c("encrypt(3,k)) ) and
P' = ¢( ~ c("encrypt(7,k)) )
are bisimilar

Proof outline: Take X as follows (so P X¢ P')
X = { (E, C["encrypt(3.k)], C["encrypt(7.k)]) |
k not free in C }
E = { (D["encrypt(3,k)], D["encrypt(7,.k)]) |
k not free in D }

and prove it to be an env. bisim.
(by case analysis on C and D)




Non-Bisimulation Example

P=1c( " clencrypt(3,k)) ) and
P' = ¢( ~ c(encrypt(7.k)) ) are
not bisimilar

Proof outline:

If P Xg P' for some env. bisim. X and E,
then by output we get O X¢: O with
( c(encrypt(3,k)),” c(encrypt(7,k)))eE".
Since (3,7) can be computed from E' by
decomposition, we get O X.. O with
(3,7)ek'’, which violates integer equality.




Simplification by
Up-To Context Technique

Problem:
Many environmental bisimulations include
all processes/values of the forms
C[V,..... V,] and C[V,', ..., V,']
for some (V,,V:')...., v,.v,")

Solution:
A "smaller" version of environmental
bisimulations, where processes/values of
the forms C[V,,..., V,] and C[V,',.... V,.']
can be omitted if (V,,V,'),.... (V,.V,') are
included



Example of Environmental
Bisimulation Up-To Context

Consider again:
P=c( " c("encrypt(3.k)) )
P' = ¢( ° c("encrypt(7.k)) )
Then
Y={( P P)}

is an environmental bisimulation
up-to context, where:

E ={(c.c), ("encrypt(3,k), “encrypt(7,k))}




In our APLAS'0O9 paper

e Formal definitions of the calculus
and our environmental bisimulations
(and the up-to context technique)

e Soundness and completeness proofs
(i.e. proof of coincidence with
reduction-closed barbed equivalence)

e More sophisticated examples
- Software distribution system
- Online e-mail client



Agenda of Part II

e Informal overview of the work
e A little technical details

e A little more technical details
e Conclusion




Conclusions of Part ITI

e Higher-order cryptographic processes
are non-trivial

- Previous theories do not apply
(higher-order pi-calculus, spi-calculus, ..)

e Environmental bisimulations "scale" well
to such sophisticated calculi

- Including the present one

m Future work:
automation, extension, simplification, ..




Sources of
Discussion/Controversy

e Relationship to denotational
semantics (especially, games)
- Denotational semantics is "syntax-free"

- Env. bisim. is "semantics-free"

e Very robust, but (arguably) ugly,
lacking good mathematical structure

— More structured and robust framework?

e (Semi-)automation/mechanization

- What does "completeness” mean when
the problem is undecidable?



