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Emphasis on Developing 
•  This is a talk about work in progress 

•  The language design is substantially complete 
(for now), but not all of the details have been 
written down, and some have not been tested in 
practice   

•  A prototype implementation is in progress, but 
it is substantially incomplete and lags the design 
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Habit 

•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

Formerly 
“Systems Haskell” 

Hasp  Project 

Habit 

•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

Haskell + bits 
High assurance + bits 
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Habit 

•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

Purity and 
Higher Orders 
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Habit 

•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

An excellent source of 
puns … 
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Habit 

•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  Primary Commitments: 
•  Systems Programming 
•  Trading Control and Abstraction 
•  High Assurance 
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•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  Systems (Bare Metal) Programming: 
•  Standalone embedded applications 
•  Operating systems, microkernels, device 

drivers, … 

Habit 
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•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  Provide programmers with the ability to choose 
and make informed trade-offs between: 
•  Control over data representation and 

performance  
•  Abstraction and use of higher-level language 

mechanisms 

Habit 
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•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  High Assurance: a full and formal semantics that 
provides a basis for: 
•  Mechanized reasoning 
•  Meaningful assurance arguments 
•  Verification of Habit programs and 

implementations 

Habit 
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•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  High Assurance Runtime System (HARTS): 
•  Services for memory management, garbage 

collection, foreign function interface, … 
•  Designed to be “as simple as possible”, 

modular, formally verified 

Habit 
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•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  Productivity: higher-level abstractions, 
genericity, reuse 

•  Safety: built-in type and memory safety 
guarantees 

•  Tractability: purity, referential transparency, 
encapsulation of effects, semantic foundations 

Habit 
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•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  Increasing interest & adoption 
•  Strong community 
•  Avoid reinventing the wheel: 

• Syntax: familiar notations and concepts 
• Semantics: powerful, expressive type 

system 

Habit 
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•  A dialect of Haskell that is designed to meet the 
needs of high assurance systems programming 

•  Issues raised by “House” experience: 
•  Low level features via unsafe interfaces 
•  Unpredictable performance 
•  Large, feature rich runtime system 
•  Abstraction from resource management 

Habit 
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HASP Project Overview 

High 
   Assurance 
   Systems 
    Programming 
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HARTS 

HASP Project Overview 

Habit 
Language 

Prototype 
Application 

Verified 
Application 

Formal 
Semantics 
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Design Influences 
General areas/application 
domains 
• Operating systems 
• Microkernels 
• VMMs 
• Hypervisors 
• Device drivers 

Languages 
• Haskell, ML, BlueSpec, Erlang, 
Cryptol, … 
• C, C++, Ada, assembler, … 

Previous PSU/OGI work 
• Programatica 
• House, H, L4, pork 
• Bitdata and memory areas 
(Hobbit) 

Previous Galois work 
• TSE, especially the Block 
Access Controller (BAC) 
• Haskell file system 
• HaLVM 
• AIM debugger 
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Requirements 

•  Representation/Control 
•  Code: optimization, implementation 
•  Data: layout, initialization, conversion 

•  Ease of use 
•  Notation, type inference, user-defined control structures 

•  Verification 
•  Semantic foundations, type and memory safety 
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The Habit Language Report 

Last Year: 
•  Preliminary Report 

(~70 pages) 

Today: 
•  A Quick Overview 
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Habit Design: Summary 

•  “Simplified” “dialect” of Haskell 
•  Foundations: pure, higher-order, typed 
•  Syntax: definitional style, lightweight notation 

•  Omitted features 
•  Module system (at least for now); fancy patterns; misc. 

syntactic sugar; strictness annotations; newtype; … 

•  Changes/additions 
•  Strict evaluation; bitdata; memory areas; type-level 

numbers; functional dependencies & notation; instance 
chains; unpointed types; monadic sugar; …  
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Conventional FP 
data List a           = Nil | Cons a (List a) 
data Maybe a          = Nothing | Just a 

map                  :: (a -> b) -> List a -> List b 
map f Nil             = Nil 
map f (Cons x xs)     = Cons (f x) (map f xs) 

foldr                :: (a -> b -> b) -> b -> List a -> b 
foldr f a Nil         = a 
foldr f a (Cons x xs) = f x (foldr f a xs) 
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Monadic Sugar 
Common patterns: 
    do b <- expr; if b then s1 else s2 
    do b <- expr; case b of alts 
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Monadic Sugar 
Common patterns: 
    if<- expr then s1 else s2 
    case<- expr of alts 

Example using if<- and case<-: 
    recvBlock :: IPCType -> Ref TCB -> K () 
    recvBlock recvtype recv 
               = if<- recvCanBlock recvtype recv 
                   then case<- get recv.status of 
                          Runnable -> removeRunnable recv 
                                      set recv.status Blocked 
                   else recvError NoPartner recvtype recv 

Hasp  Project 

Controlling Representation 

bitdata Bool  = False [ B0 ] | True [ B1 ] 
bitdata Perms = Perms [ r, w, x :: Bool ] 
bitdata Fpage 
       = Fpage [ base :: Bit 22 | size :: Bit 6 
               | reserved :: Bit 1 | perms :: Perms ] 

Bit-level data 
specifications 

Type-level 
numbers 

Mimics familiar box 
layout notation 

base22 size6 ~ r w x 
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Types in Habit 

Not a fundamentally new type system: 

Established Foundation: 
  Haskell style type system (kinds, polymorphism, type classes) 

New Primitives: 
  kinds, classes, types, functions 

New Syntax: 
  bitdata, structure, and memory area declarations 
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Example: Kinds in Haskell 

Haskell uses kinds to classify types 
*   standard types: Unsigned, Bool, etc… 
k1!k2  parameterized type constructors 
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Example: Kinds in Habit 

Habit builds on this foundation 
*   standard types: Unsigned, Bool, etc… 
k1!k2  parameterized type constructors 
nat  type-level natural numbers 
area  layout of data blocks in memory 
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Type-level Naturals (kind nat) 

Natural numbers as components of types 
•  Array bounds, bit vector widths, alignments, 

literals, memory areas sizes, etc… 

•  Examples: Bit 3,  Ix 256,  ARef 4K a,  … 

•  Simple syntax, efficient type inference (avoids 
encodings used in some Haskell libraries) 

•  Weaker than full dependent types, but 
surprisingly effective in practice 
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Memory Areas (kind area) 

Primitive type constructors 
 Stored, LE, BE  :: * ! area   (partial) 
 Array, Pad  :: nat ! area ! area 

Structures (special syntax, dot notation) 

References and Pointers 
 Ref, Ptr     :: area ! * 
 ARef, APtr  :: nat ! area ! * 
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Type Classes 
•  Ad-hoc polymorphism: 

 (+) :: Num a => a -> a -> a 

•  Functional dependencies and notation: 
 (#) :: Bit n -> Bit m -> Bit (n+m) 
  instance ByteSize (Array n t) = n * ByteSize t 
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Type Classes 
•  Ad-hoc polymorphism: 

 (+) :: Num a => a -> a -> a 

•  Functional dependencies and notation: 
 class (+) (n::nat) (m::nat) (p::nat) 
    | n m -> p, m p -> n, p n -> m 
  (#) :: (n + m = p) => Bit n -> Bit m -> Bit p 

  class ByteSize (a::area) (n::nat) | a -> n 
  instance ByteSize (Array n t) p 
        if ByteSize t m, n * m = p 
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Type Classes 
•  Ad-hoc polymorphism: 

 (+) :: Num a => a -> a -> a 

•  Functional dependencies and notation: 
 (#) :: Bit n -> Bit m -> Bit (n+m) 
  instance ByteSize (Array n t) = n * ByteSize t 

•  Instance chains, explicit failure: 
 instance AESKey Word128 
else     AESKey Word192 
else     AESKey Word256 
else     AESKey a fails 
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Unpointed Types 
•  Every type in Haskell is pointed: 

•  Includes a bottom element denoting failure to terminate 
•  Enables general recursion, complicates reasoning 

•  But many types in systems programming (e.g., bit fields, 
references,…) are naturally viewed as unpointed: 
•  No bottom element, stronger termination properties, 

manipulated via primitive recursion or “fold” operations 

•  Could be modeled by lifting to attach “false bottom” 
•  Better to handle directly; more expressive types 
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Integrating Unpointed Types 
•  Strategy for integrating unpointed types in Haskell 

proposed by Launchbury and Paterson in 1996 

•  Key idea: use type classes to identify dependencies on 
pointed types/general recursion 

 class Pointed t 
   where fix :: (t -> t) -> t 

•  Previous experiments to explore how this would scale to a 
full language design are encouraging 

•  Providing appropriate semantic foundations is challenging, 
arguably less interesting for a call-by-value language 
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Leveraging Types 
•  Fine-grained control over: 

•  representation 
•  layout 
•  alignment 

•  Safety/correctness 
•  no out of bounds array accesses 
•  no out of range numeric literals 
•  no unchecked division by zero 

•  Scoping of effects 
•  access to state, privileged operations, … 
•  documenting & enforcing correct usage 
•  ensuring correct initialization 
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(More) Conventional FP 
fpageStart       :: Fpage -> Unsigned 
fpageStart fp     = (fp.base # 0) .&. not (fpageMask fp) 

fpageEnd         :: Fpage -> Unsigned 
fpageEnd fp       = (fp.base # 0) .|. fpageMask fp 

fpageMask        :: Fpage -> Unsigned 
fpageMask fp      = fpmask fp.size 

fpmask           :: Bit 6 -> Unsigned 
fpmask n 
  | n==1 || n==32 = not 0 
  | n<12 || n>32  = 0 
  | otherwise     = (1 << n) - 1 

Could be compiled 
as a lookup table … 

shift inferred from type 
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Leveraging Types: Arrays 

•  The type Ix n contains only in-bound indices for 
an array of length n 

•  Array lookup can be fast (no bounds check) and 
safe: 
        (@) :: Ref (Array n t) -> Ix n -> Ref t 

•  Amortized construction of safe indices with 
comparisons that are already required 

  (<=?) :: Unsigned -> Ix n -> Maybe (Ix n) 
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Leveraging Types: Literals 

•  It is convenient to allow 0 to be used as a value of 
many types: Bit n, Ix n, Unsigned, … 

•  Haskell: interpret as value of type Num a => a 
•  Requires bignum arithmetic at run-time 
•  Does not test validity (e.g., 5 is not a valid Bit 2 or Ix 3) 

•  Habit: introduce a class Lit n t, indicating n is a 
valid literal of type t 
•  Requires bignum arithmetic at compile-time 
•  0 :: NumLit 0 t => t can be used at expected types 
•  5 :: NumLit 5 t => t rejects invalid uses 
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Leveraging Types: Division 

•  Division has type:  t -> NonZero t -> t 

•  Only two ways to construct a NonZero t value: 
•  Runtime check (cost can be amortized): 

nonZero :: t -> Maybe (NonZero t) 

•  Literal divisor checked at compile-time: 
instance (Lit n t, 0<n) => Lit n (NonZero t) 

•  Simple, safe, low-cost, generic 
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Leveraging Types: Initialization 
•  How to ensure deterministic initialization of memory areas/

global data? 

•  Answer: The abstract type Init a, with a family of 
operations for constructing initializers: 

   initArray :: (Ix n -> Init a) -> Init (Array n a) 

•  Initializers specified in memory area declarations: 
  area name <- init :: type 

•  Operations for the Init type can write (initialize), but not 
read, or perform side effects; execution of initializers, in 
any order, produces deterministic effect 
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Compilation Strategy 

•  Whole program optimization 
•  Appropriate for bare metal domain 
•  Enables whole program optimization 

•  Specialization eliminates polymorphism, classes 
•  Reduce runtime overhead 
•  Type-specific/customized implementations 
•  Based on experiments, code explosion is not expected 

to be a problem 

Habit AST HIL Fidget PPC/
ARM 
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•  Goals for Habit: 
•  build on successes in the design of Haskell 
•  reflect requirements and feature set for the 

bare metal programming domain 
•  leverage type system 
•  provide foundations for formal verification 

•  How are we getting there? 
•  careful selection of primitive kinds, classes 

types, and functions 
•  focus on features for bare-metal programming 

Conclusions 
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Watch this space … 


