
Hasp Project

Developing Good Habits for
Bare-Metal Programming

Mark P Jones, Iavor Diatchki (Galois),
Garrett Morris, Creighton Hogg, Justin Bailey
April 2010

Hasp Project

Emphasis on Developing
•  This is a talk about work in progress

•  The language design is substantially complete
(for now), but not all of the details have been
written down, and some have not been tested in
practice

•  A prototype implementation is in progress, but
it is substantially incomplete and lags the design

Hasp Project

Habit

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

Formerly
“Systems Haskell”

Hasp Project

Habit

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

Haskell + bits
High assurance + bits

Hasp Project

Habit

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

Purity and
Higher Orders

Hasp Project

Habit

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

An excellent source of
puns …

Hasp Project

Habit

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  Primary Commitments:
•  Systems Programming
•  Trading Control and Abstraction
•  High Assurance

Hasp Project

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  Systems (Bare Metal) Programming:
•  Standalone embedded applications
•  Operating systems, microkernels, device

drivers, …

Habit

Hasp Project

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  Provide programmers with the ability to choose
and make informed trade-offs between:
•  Control over data representation and

performance
•  Abstraction and use of higher-level language

mechanisms

Habit

Hasp Project

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  High Assurance: a full and formal semantics that
provides a basis for:
•  Mechanized reasoning
•  Meaningful assurance arguments
•  Verification of Habit programs and

implementations

Habit

Hasp Project

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  High Assurance Runtime System (HARTS):
•  Services for memory management, garbage

collection, foreign function interface, …
•  Designed to be “as simple as possible”,

modular, formally verified

Habit

Hasp Project

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  Productivity: higher-level abstractions,
genericity, reuse

•  Safety: built-in type and memory safety
guarantees

•  Tractability: purity, referential transparency,
encapsulation of effects, semantic foundations

Habit

Hasp Project

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  Increasing interest & adoption
•  Strong community
•  Avoid reinventing the wheel:

• Syntax: familiar notations and concepts
• Semantics: powerful, expressive type

system

Habit

Hasp Project

•  A dialect of Haskell that is designed to meet the
needs of high assurance systems programming

•  Issues raised by “House” experience:
•  Low level features via unsafe interfaces
•  Unpredictable performance
•  Large, feature rich runtime system
•  Abstraction from resource management

Habit

Hasp Project

HASP Project Overview

High
 Assurance
 Systems
 Programming

Hasp Project

HARTS

HASP Project Overview

Habit
Language

Prototype
Application

Verified
Application

Formal
Semantics

Hasp Project

Design Influences
General areas/application
domains
• Operating systems
• Microkernels
• VMMs
• Hypervisors
• Device drivers

Languages
• Haskell, ML, BlueSpec, Erlang,
Cryptol, …
• C, C++, Ada, assembler, …

Previous PSU/OGI work
• Programatica
• House, H, L4, pork
• Bitdata and memory areas
(Hobbit)

Previous Galois work
• TSE, especially the Block
Access Controller (BAC)
• Haskell file system
• HaLVM
• AIM debugger

Hasp Project

Requirements

•  Representation/Control
•  Code: optimization, implementation
•  Data: layout, initialization, conversion

•  Ease of use
•  Notation, type inference, user-defined control structures

•  Verification
•  Semantic foundations, type and memory safety

Hasp Project

The Habit Language Report

Last Year:
•  Preliminary Report

(~70 pages)

Today:
•  A Quick Overview

Hasp Project

Habit Design: Summary

•  “Simplified” “dialect” of Haskell
•  Foundations: pure, higher-order, typed
•  Syntax: definitional style, lightweight notation

•  Omitted features
•  Module system (at least for now); fancy patterns; misc.

syntactic sugar; strictness annotations; newtype; …

•  Changes/additions
•  Strict evaluation; bitdata; memory areas; type-level

numbers; functional dependencies & notation; instance
chains; unpointed types; monadic sugar; …

Hasp Project

Conventional FP
data List a = Nil | Cons a (List a)
data Maybe a = Nothing | Just a

map :: (a -> b) -> List a -> List b
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

foldr :: (a -> b -> b) -> b -> List a -> b
foldr f a Nil = a
foldr f a (Cons x xs) = f x (foldr f a xs)

Hasp Project

Monadic Sugar
Common patterns:
 do b <- expr; if b then s1 else s2
 do b <- expr; case b of alts

Hasp Project

Monadic Sugar
Common patterns:
 if<- expr then s1 else s2
 case<- expr of alts

Example using if<- and case<-:
 recvBlock :: IPCType -> Ref TCB -> K ()
 recvBlock recvtype recv
 = if<- recvCanBlock recvtype recv
 then case<- get recv.status of
 Runnable -> removeRunnable recv
 set recv.status Blocked
 else recvError NoPartner recvtype recv

Hasp Project

Controlling Representation

bitdata Bool = False [B0] | True [B1]
bitdata Perms = Perms [r, w, x :: Bool]
bitdata Fpage
 = Fpage [base :: Bit 22 | size :: Bit 6
 | reserved :: Bit 1 | perms :: Perms]

Bit-level data
specifications

Type-level
numbers

Mimics familiar box
layout notation

base22 size6 ~ r w x

Hasp Project

Types in Habit

Not a fundamentally new type system:

Established Foundation:
 Haskell style type system (kinds, polymorphism, type classes)

New Primitives:
 kinds, classes, types, functions

New Syntax:
 bitdata, structure, and memory area declarations

Hasp Project

Example: Kinds in Haskell

Haskell uses kinds to classify types
* standard types: Unsigned, Bool, etc…
k1!k2 parameterized type constructors

Hasp Project

Example: Kinds in Habit

Habit builds on this foundation
* standard types: Unsigned, Bool, etc…
k1!k2 parameterized type constructors
nat type-level natural numbers
area layout of data blocks in memory

Hasp Project

Type-level Naturals (kind nat)

Natural numbers as components of types
•  Array bounds, bit vector widths, alignments,

literals, memory areas sizes, etc…

•  Examples: Bit 3, Ix 256, ARef 4K a, …

•  Simple syntax, efficient type inference (avoids
encodings used in some Haskell libraries)

•  Weaker than full dependent types, but
surprisingly effective in practice

Hasp Project

Memory Areas (kind area)

Primitive type constructors
 Stored, LE, BE :: * ! area (partial)
 Array, Pad :: nat ! area ! area

Structures (special syntax, dot notation)

References and Pointers
 Ref, Ptr :: area ! *
 ARef, APtr :: nat ! area ! *

Hasp Project

Type Classes
•  Ad-hoc polymorphism:

 (+) :: Num a => a -> a -> a

•  Functional dependencies and notation:
 (#) :: Bit n -> Bit m -> Bit (n+m)
 instance ByteSize (Array n t) = n * ByteSize t

Hasp Project

Type Classes
•  Ad-hoc polymorphism:

 (+) :: Num a => a -> a -> a

•  Functional dependencies and notation:
 class (+) (n::nat) (m::nat) (p::nat)
 | n m -> p, m p -> n, p n -> m
 (#) :: (n + m = p) => Bit n -> Bit m -> Bit p

 class ByteSize (a::area) (n::nat) | a -> n
 instance ByteSize (Array n t) p
 if ByteSize t m, n * m = p

Hasp Project

Type Classes
•  Ad-hoc polymorphism:

 (+) :: Num a => a -> a -> a

•  Functional dependencies and notation:
 (#) :: Bit n -> Bit m -> Bit (n+m)
 instance ByteSize (Array n t) = n * ByteSize t

•  Instance chains, explicit failure:
 instance AESKey Word128
else AESKey Word192
else AESKey Word256
else AESKey a fails

Hasp Project

Unpointed Types
•  Every type in Haskell is pointed:

•  Includes a bottom element denoting failure to terminate
•  Enables general recursion, complicates reasoning

•  But many types in systems programming (e.g., bit fields,
references,…) are naturally viewed as unpointed:
•  No bottom element, stronger termination properties,

manipulated via primitive recursion or “fold” operations

•  Could be modeled by lifting to attach “false bottom”
•  Better to handle directly; more expressive types

Hasp Project

Integrating Unpointed Types
•  Strategy for integrating unpointed types in Haskell

proposed by Launchbury and Paterson in 1996

•  Key idea: use type classes to identify dependencies on
pointed types/general recursion

 class Pointed t
 where fix :: (t -> t) -> t

•  Previous experiments to explore how this would scale to a
full language design are encouraging

•  Providing appropriate semantic foundations is challenging,
arguably less interesting for a call-by-value language

Hasp Project

Leveraging Types
•  Fine-grained control over:

•  representation
•  layout
•  alignment

•  Safety/correctness
•  no out of bounds array accesses
•  no out of range numeric literals
•  no unchecked division by zero

•  Scoping of effects
•  access to state, privileged operations, …
•  documenting & enforcing correct usage
•  ensuring correct initialization

Hasp Project

(More) Conventional FP
fpageStart :: Fpage -> Unsigned
fpageStart fp = (fp.base # 0) .&. not (fpageMask fp)

fpageEnd :: Fpage -> Unsigned
fpageEnd fp = (fp.base # 0) .|. fpageMask fp

fpageMask :: Fpage -> Unsigned
fpageMask fp = fpmask fp.size

fpmask :: Bit 6 -> Unsigned
fpmask n
 | n==1 || n==32 = not 0
 | n<12 || n>32 = 0
 | otherwise = (1 << n) - 1

Could be compiled
as a lookup table …

shift inferred from type

Hasp Project

Leveraging Types: Arrays

•  The type Ix n contains only in-bound indices for
an array of length n

•  Array lookup can be fast (no bounds check) and
safe:
 (@) :: Ref (Array n t) -> Ix n -> Ref t

•  Amortized construction of safe indices with
comparisons that are already required

 (<=?) :: Unsigned -> Ix n -> Maybe (Ix n)

Hasp Project

Leveraging Types: Literals

•  It is convenient to allow 0 to be used as a value of
many types: Bit n, Ix n, Unsigned, …

•  Haskell: interpret as value of type Num a => a
•  Requires bignum arithmetic at run-time
•  Does not test validity (e.g., 5 is not a valid Bit 2 or Ix 3)

•  Habit: introduce a class Lit n t, indicating n is a
valid literal of type t
•  Requires bignum arithmetic at compile-time
•  0 :: NumLit 0 t => t can be used at expected types
•  5 :: NumLit 5 t => t rejects invalid uses

Hasp Project

Leveraging Types: Division

•  Division has type: t -> NonZero t -> t

•  Only two ways to construct a NonZero t value:
•  Runtime check (cost can be amortized):

nonZero :: t -> Maybe (NonZero t)

•  Literal divisor checked at compile-time:
instance (Lit n t, 0<n) => Lit n (NonZero t)

•  Simple, safe, low-cost, generic

Hasp Project

Leveraging Types: Initialization
•  How to ensure deterministic initialization of memory areas/

global data?

•  Answer: The abstract type Init a, with a family of
operations for constructing initializers:

 initArray :: (Ix n -> Init a) -> Init (Array n a)

•  Initializers specified in memory area declarations:
 area name <- init :: type

•  Operations for the Init type can write (initialize), but not
read, or perform side effects; execution of initializers, in
any order, produces deterministic effect

Hasp Project

Compilation Strategy

•  Whole program optimization
•  Appropriate for bare metal domain
•  Enables whole program optimization

•  Specialization eliminates polymorphism, classes
•  Reduce runtime overhead
•  Type-specific/customized implementations
•  Based on experiments, code explosion is not expected

to be a problem

Habit AST HIL Fidget PPC/
ARM

Hasp Project

•  Goals for Habit:
•  build on successes in the design of Haskell
•  reflect requirements and feature set for the

bare metal programming domain
•  leverage type system
•  provide foundations for formal verification

•  How are we getting there?
•  careful selection of primitive kinds, classes

types, and functions
•  focus on features for bare-metal programming

Conclusions

Hasp Project

Watch this space …

