
The Interaction of Contracts and Laziness

Markus Degen, Peter Thiemann, Stefan Wehr

Universität Freiburg, Germany

Shirahama, Japan, 12.04.2010

Design by Contract

Exploration

Analysis

Design by Contract

I Equip functions with contracts: pre- and postconditions
I Static or dynamic validation

I static: program verification, theorem proving
I dynamic: testing, contract monitoring

I Originally proposed for imperative/object-oriented
languages

I Extended to higher-order functional languages [Findler,
Felleisen 2002]

Contracts for Higher-Order Languages

I Main complication: blame assignment in the presence of
higher-order functions

I Non-trivial semantics:
I projections,
I pairs of projections,
I interaction with exceptions

I This work: contracts for lazy functional languages (Haskell)

Contracts for Lazy Functional Languages
Proposals

I Ralf Hinze and Johan Jeuring and Andres Löh. Typed
Contracts for Functional Programming. FLOPS 2006.

I Olaf Chitil and Frank Huch. Monadic Prompt Lazy
Assertions in Haskell. APLAS 2007.
(and earlier work by Chitil, McNeill, Runciman)

I Dana N. Xu and Simon Peyton Jones and Koen Claessen.
Static Contract Checking for Haskell. POPL 2009.

Contract Language

data Ctr :: * -> * where
Pred :: (a -> Bool) -> Ctr a
Pair :: Ctr a -> Ctr b -> Ctr (a, b)
Fun :: Ctr a -> (a -> Ctr b) -> Ctr (a -> b)

assert :: Ctr a -> a -> a

Implementation of Contract Monitoring
[Hinze Jeuring Löh 2006] transcribed and extended from [Findler Felleisen 2002]

assert :: Ctr a -> a -> a
assert ctr a = case ctr of
Pred p -> if p a then a else error "blame"
Pair c1 c2 -> (assert c1 (fst a),

assert c2 (snd a))
Fun c1 f2 -> (\ y -> assert (f2 y) (a y)) .

assert c1

Exploration

Exploration

Function first selects the first component of a pair

first :: (Int, Int) -> Int
first (x, y) = x

Given the preconditions x>y and y>=0, the function first
returns a strictly positive number.

fc :: (Int, Int) -> Int
fc = assert (Fun (Pred (\ (x, y) -> x>y && y>=0))

(\ (x, y) -> Pred (\ r -> r>0)))
first

Easy to verify/prove that first fulfills this specification.

Example in Strict Haskell

fc = assert (Fun (Pred (\ (x, y) -> x>y && y>=0))
(\ (x, y) -> Pred (\ r -> r>0)))

first

Imagine a strict variant of Haskell and evaluate

fc (-1, 5)

I Precondition x>y would fail
I Blaming the caller of fc

Example in (Lazy) Haskell
Evaluate

fc (-1, 5)

Expansion of assert for the function contract yields

let a = (-1, 5)
a’ = assert (Pred (\(x, y) -> x>y && y>=0)) a
r = assert (Pred (\ r -> r>0)) (first a’)

in r

Further expansion of the predicate contract yields

let a = (-1, 5)
a’ = if fst a>snd a && snd a>=0

then a else error "blame caller"
x = first a’
r = if x>0 then x else error "blame callee"

in r

Example in (Lazy) Haskell (cont’d)

Result
I contract violation detected
I caller blamed
I but the semantics is changed

I first (42, let l=l in l)⇓42
I fc (42, let l=l in l)⇑

Questions

I How severe is the change of the semantics?
I Can it be avoided?
I If so, at what cost?

Lazy Assertions

Lazy Assertions [Chitil Huch 2007] only evaluate a predicate
once its arguments are evaluated

I Assertions are evaluated in coroutines
I Implementation involves some cool Haskell hacking

Example in Haskell with Lazy Assertions

let (x, y) = (-1, 5)
-- wait (evaluated x && evaluated y)
-- (if x>y && y>=0 then ()
-- else error "blame caller")
r = x
-- wait (evaluated r)
-- (if r>0 then ()
-- else error "blame callee")

in r

Evaluation of fc (-1, 5) yields
I a contract violation

I but shockingly, it now blames the callee

Example in Haskell with Lazy Assertions

let (x, y) = (-1, 5)
-- wait (evaluated x && evaluated y)
-- (if x>y && y>=0 then ()
-- else error "blame caller")
r = x
-- wait (evaluated r)
-- (if r>0 then ()
-- else error "blame callee")

in r

Evaluation of fc (-1, 5) yields
I a contract violation
I but shockingly, it now blames the callee

Another Example

Consider a slightly different postcondition, which is also implied
by the precondition

fd :: (Int, Int) -> Int
fd = assert (Fun (Pred (\(x, y) -> x>y && y>=0))

(\(x, y) -> Pred (\r -> r>y)))
first

I No difference in strict Haskell
I No difference in the HJL implementation
I What about lazy assertions?

Example Expanded with Lazy Assertions

let (x, y) = (-1, 5)
-- wait (evaluated x && evaluated y)
-- (if x>y && y>=0 then ()
- else error "blame caller")
r = x
-- wait (evaluated r && evaluated y)
-- (if r>y then ()
-- else error "blame callee")

in r

What happens?

I Neither condition is checked
I fd may return any integer

Example Expanded with Lazy Assertions

let (x, y) = (-1, 5)
-- wait (evaluated x && evaluated y)
-- (if x>y && y>=0 then ()
- else error "blame caller")
r = x
-- wait (evaluated r && evaluated y)
-- (if r>y then ()
-- else error "blame callee")

in r

What happens?
I Neither condition is checked
I fd may return any integer

Properties of Contract Monitoring

I Meaning preservation / meaning reflection
I Faithfulness / completeness
I Idempotence (assert c (assert c e)) ∼ assert
c e

Meaning Preservation and Meaning Reflection

MP Adding contracts only adds blame, but does not
change the semantics otherwise.

MR Removing contracts does not change successful
program runs.

I Both relate evaluation of e with assert c e

I Both specify the same relation!

assert c e
⇓ ⇑] [

⇓ 5 5

e ⇑ 5

] 5

Meaning Preservation and Meaning Reflection

MP Adding contracts only adds blame, but does not
change the semantics otherwise.

MR Removing contracts does not change successful
program runs.

I Both relate evaluation of e with assert c e

I Both specify the same relation!

assert c e
⇓ ⇑] [

⇓ 5 5

e ⇑ 5

] 5

Faithfulness and Completeness

I Express consistency with static verification
I Formalize intuitive expectations

Faithfulness A consumer of a value with an assertion may
assume that the assertion and its logical
consequences are true.
In particular, the body of a function may assume
that the precondition is true and the caller of a
function may assume that the postcondition is true
for the result.

Completeness Each violation of a contract is detected and
signalled by an exception.

Completeness for Predicate Contracts

I Faithfulness and completeness relate the outcome of p e
with the outcome of assert (Pred p) e.

I Both are equivalent!
I Stated in matrix form:

assert (Pred p) e
⇓ ⇑] [

⇓ False 5

⇓ True 5 5 5

p e ⇑ 5

] 5

Results

I Monitoring for strict languages is meaning preserving and
faithful (if contracts are assumed to be effect-free)

I HJL monitoring is neither meaning preserving nor faithful
I Lazy assertions are meaning preserving, but not faithful
I Static checking is meaning preserving, but not faithful
I We propose eager contract monitoring, which is faithful,

but not meaning preserving.
I We conjecture that faithful and meaning preserving

monitoring for lazy languages is not possible.

	Design by Contract
	Exploration
	Analysis

