The Interaction of Contracts and Laziness

Markus Degen, Peter Thiemann, Stefan Wehr
Universitat Freiburg, Germany

Shirahama, Japan, 12.04.2010

Design by Contract
Exploration

Analysis



Design by Contract

» Equip functions with contracts: pre- and postconditions
» Static or dynamic validation
» static: program verification, theorem proving
» dynamic: testing, contract monitoring
» Originally proposed for imperative/object-oriented
languages
» Extended to higher-order functional languages [Findler,
Felleisen 2002]



Contracts for Higher-Order Languages

» Main complication: blame assignment in the presence of
higher-order functions
» Non-trivial semantics:
» projections,
» pairs of projections,
» interaction with exceptions

» This work: contracts for lazy functional languages (Haskell)



Contracts for Lazy Functional Languages

Proposals

» Ralf Hinze and Johan Jeuring and Andres Léh. Typed
Contracts for Functional Programming. FLOPS 2006.

» Olaf Chitil and Frank Huch. Monadic Prompt Lazy
Assertions in Haskell. APLAS 2007.
(and earlier work by Chitil, McNeill, Runciman)

» Dana N. Xu and Simon Peyton Jones and Koen Claessen.
Static Contract Checking for Haskell. POPL 2009.



Contract Language

data Ctr :: * —> % where
Pred :: (a —> Bool) —-> Ctr a
Pair :: Ctr a -> Ctr b -> Ctr (a, b)
Fun :: Ctr a —> (a —> Ctr b) —> Ctr (a —> b)

assert :: Ctr a -—> a -> a



Implementation of Contract Monitoring
[Hinze Jeuring L6h 2006] transcribed and extended from [Findler Felleisen 2002]

assert :: Ctr a —> a —-> a
assert ctr a = case ctr of
Pred p -> if p a then a else error "blame"

Pair cl c2 -> (assert cl (fst a),
assert c2 (snd a))
Fun cl f2 -> (\ y —> assert (f2 y) (a vy))
assert cl



Exploration



Exploration

Function first selects the first component of a pair

first :: (Int, Int) -> Int
first (x, y) = x

Given the preconditions x>y and y>=0, the function first
returns a strictly positive number.

fc :: (Int, Int) -> Int
fc = assert (Fun (Pred (\ (x, y) —> x>y && y>=0))
(\ (x, y) —> Pred (\ r —> r>0)))
first

Easy to verify/prove that £irst fulfills this specification.



Example in Strict Haskell

fc = assert (Fun (Pred (\ (x, y) —-> x>y && y>=0))
(\ (x, y) —> Pred (\ r —> r>0)))
first

Imagine a strict variant of Haskell and evaluate

» Precondition x>y would fail
» Blaming the caller of fc



Example in (Lazy) Haskell
Evaluate

Expansion of assert for the function contract yields

let a = (-1, 5)
a’ = assert (Pred (\(x, y) —-> x>y && y>=0)) a
r = assert (Pred (\ r —> r>0)) (first a’)

in r

Further expansion of the predicate contract yields

let a = (-1, 5)
a’ = if fst a>snd a && snd a>=0
then a else error "blame caller"
x = first a’

if x>0 then x else error "blame callee"

[
Il

in r



Example in (Lazy) Haskell (cont'd)

Result
» contract violation detected
» caller blamed
» but the semantics is changed

» first (42, let 1=1 in 1)J}42
» fc (42, let 1=1 in 1){



Questions

» How severe is the change of the semantics?
» Can it be avoided?
» If so, at what cost?



Lazy Assertions

Lazy Assertions [Chitil Huch 2007] only evaluate a predicate
once its arguments are evaluated

» Assertions are evaluated in coroutines
» Implementation involves some cool Haskell hacking



Example in Haskell with Lazy Assertions

let (x, y) = (-1, 5)
-— wait (evaluated x && evaluated vy)
—— (if x>y && y>=0 then ()
—— else error "blame caller")
r = x
—-— wait (evaluated r)
- (if r>0 then ()
—= else error "blame callee")
in r

Evaluation of fc (-1, 5) yields
» a contract violation



Example in Haskell with Lazy Assertions

let (x, y) = (-1, 5)
-— wait (evaluated x && evaluated vy)
—— (if x>y && y>=0 then ()
—— else error "blame caller")
r = x
—-— wait (evaluated r)
- (if r>0 then ()
—= else error "blame callee")
in r

Evaluation of fc (-1, 5) yields
» a contract violation
» but shockingly, it now blames the callee



Another Example

Consider a slightly different postcondition, which is also implied
by the precondition

fd :: (Int, Int) -> Int
fd = assert (Fun (Pred (\(x, y) —> x>y && y>=0))

(\(x, y) —> Pred (\r -> r>y)))
first

» No difference in strict Haskell

» No difference in the HJL implementation
» What about lazy assertions?



Example Expanded with Lazy Assertions

let (x, y) = (-1, 5)
-— wait (evaluated x && evaluated vy)
—— (if x>y && y>=0 then ()
- else error "blame caller")
r = x
-— walt (evaluated r && evaluated vy)
—— (if r>y then ()
—= else error "blame callee")
in r

What happens?



Example Expanded with Lazy Assertions

let (x, y) = (-1, 5)
-— wait (evaluated x && evaluated vy)
—— (if x>y && y>=0 then ()
- else error "blame caller")
r = x
-— walt (evaluated r && evaluated vy)
—— (if r>y then ()
—= else error "blame callee")
in r

What happens?
» Neither condition is checked
» f£d may return any integer



Properties of Contract Monitoring

» Meaning preservation / meaning reflection
» Faithfulness / completeness

» Idempotence (assert c (assert c e)) ~ assert
c e



Meaning Preservation and Meaning Reflection

MP Adding contracts only adds blame, but does not
change the semantics otherwise.

MR Removing contracts does not change successful
program runs.

» Both relate evaluation of e with assert c e



Meaning Preservation and Meaning Reflection

MP Adding contracts only adds blame, but does not
change the semantics otherwise.

MR Removing contracts does not change successful
program runs.

» Both relate evaluation of e with assert c e
» Both specify the same relation!

assert c e

$ 4t b
J | X X
e 1 X
it X




Faithfulness and Completeness

» Express consistency with static verification
» Formalize intuitive expectations

Faithfulness A consumer of a value with an assertion may
assume that the assertion and its logical
consequences are true.

In particular, the body of a function may assume
that the precondition is true and the caller of a
function may assume that the postcondition is true
for the result.

Completeness Each violation of a contract is detected and
signalled by an exception.



Completeness for Predicate Contracts

» Faithfulness and completeness relate the outcome of p e
with the outcome of assert (Pred p) e.

» Both are equivalent!
» Stated in matrix form:

assert (Pred p) e
4 st b
| False X
U True | X X X
p e T X
1t X




Results

vV v v Y

Monitoring for strict languages is meaning preserving and
faithful (if contracts are assumed to be effect-free)

HJL monitoring is neither meaning preserving nor faithful
Lazy assertions are meaning preserving, but not faithful
Static checking is meaning preserving, but not faithful

We propose eager contract monitoring, which is faithful,
but not meaning preserving.

We conjecture that faithful and meaning preserving
monitoring for lazy languages is not possible.



	Design by Contract
	Exploration
	Analysis

