
CloudTalk: Programming
with Search and Wikis

Sean McDirmid

Microsoft Research Asia

Beijing China

Problem

• World of code keeps getting bigger

–More libraries and frameworks

–More code snippets and samples

–More complexity

• Niche (long tail) reuse difficult

Cloud-specific Problems
• Multitude of services

– E.g., REST social/location services like
Facebook, Yelp, Foursquare, Flickr, Gowalla,
Eventful, …

– Which service provides what we want?
• (Possibly multiple services)

• Services have custom schemas
– user_name, user_first_name , user

Mashups

So what?

• Claim: managing huge namespaces is
one of the upcoming big challenges in PL
– The namespace for whatever is available

• What can we do about it?

Intellisense/Autocomplete

Intellisense/Autocomplete

• Useful for browsing
– Recalling what’s in a local scope

• Very local
– Doesn’t apply to everything…like some library you

don’t have yet.

Search

Search background

• Find long-tail information
– Obscure, niche, but pervasive

• Search-assisted “Google” Memory

–Not knowing something is less of a problem

–Viable on-the-fly discovery and learning

• Applied to PL?

Search and Code

Search and Code

Going Farther with Search
Semantic Search

Autocomplete + Search

Limitations

• External search disrupts flow

• Context is valuable

• Search as just a tool concern
– PL design not applied

• How about search being more like a PL?
– WolframAlpha

WolframAlpha Limitations

• Not much composition
– The time derivative of PRC population

• Not much abstraction
– Lacks functions and variables

• Very incomplete interface to Mathematica

– Not a PL, but still…

Names vs. Identifiers

• Identifiers
– Just strings, meaning only by convention

– “f” vs. “integerToString

• Names
– Has meaning

– Has synonyms that can be resolved

– Keyword searchable

• First-class naming in PL design?

More PL-ish

Route to this conventions’ stalls
that interest my pals

Word Sense Resolution

route(

 this-convention.stalls.if

 (b =>

 interest(my.pals, b)

))

More PL-ish

route(

 this-convention.stalls.if

 (b =>

 interest(my.friends,b)

))

More PL-ish

route(

 this-convention.booths.if

 (b =>

 interest(my.friends,b)

))

More PL-ish

map-route(

 this-convention.booths.if

 (b =>

show-interest(my.friends,b)

))

Types and Search

• Beyond simple procedure calls

–Query results can have non-local
consequences

• Use types to track consequences

–Query then involves type info

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = (50, 0)

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = (50, 0)

ui-panel.slider <:

 ui-panel.element

point position in ui-panel

 (layout = canvas).element

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = (50, 0)

s <: ui-panel

 (layout = canvas).element

point position in ui-panel

 (layout = canvas).element

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = top

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = top

placement in ui-panel

 (layout = dock).element

top, bottom, left, right

 placement

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = top

ui-panel, slider,

layout, canvas, position,

top

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = top

ui-panel, slider, element,

layout, canvas, position,

top, placement

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = top

ui-panel, slider, element,

layout, canvas, position,

top, placement

position in ui-panel

 (layout = canvas).element

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = top

ui-panel, slider, element,

layout, canvas, position,

top, placement

position in ui-panel

 (layout = canvas).element

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = top

More PL-ish

p : ui-panel

s : p.slider

p.layout = dock

…

s.placement = top

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position = north

More PL-ish

p : ui-panel

s : p.slider

p.layout = dock

…

s.placement = top

More PL-ish

p : ui-panel

s : p.slider

p.layout = canvas

…

s.position.y = 0

Searching with Types

• Dependent typing
– Dependent classes (Gasiunas, Mezini, Ostermann)

Next Step

• Where to find things?

–General Internet is too volatile

–Review and transparency

• Community convergence required

–Diversity in naming and architecture makes
reuse more difficult

The Code Wiki

Code wiki

• Flat namespace

–All definitions at the top-level

–Disambiguate through richer naming

• Everyone shares the same namespace

–No separate libraries/modules/frameworks

–No explicit import

Code wiki

• Namespace is editable by all
–Community reviewed, enhanced, refactored

–Convergence of community vocabulary

• Linking through pervasive search
– Linking as key to wiki’s success

Eliminating Diversity

• Consistent naming

–Name new stuff like existing stuff

• High-level declarative abstractions
– Not expressive or powerful

• Binding, non-recursive

– Just easy to use

Conclusion

• Programming Language Implementation (PLI)

–Compiler or interpreter

–Libraries (lots of them) and services*

–IDE

–Community

• Consider in PL design

北京欢迎你!
WELCOME TO BEIJING!

