- Clean-slate design of Resilient, Adaptive, Secure Hosts
V '
DARPA - - -
B—] N . .

CRASH/SAFE

Benjamin C. Pierce
March 11, 2011

BAE SYSTEMS

[monun] P, oo oo) R
C 4 o A (RN
.) A N | L
AR

Present-day computing platforms
are distressingly insecure!

BAE SYSTEMS

One culprit: legacy requirements

complex instruction sets
complex, monolithic operating systems
insecure, low-level programming languages

O\

Patch? Reboot!

BAE SYSTEMS

CRASH

Clean-Slate Design
of Resilient, Adaptive, Secure Hosts

SA -
FE Team Peon @ @

N

Bryan Loyall Greg Sullivan André DeHon

Northeastern

4 fl\

Howard Reubenstein Basil Krikeles

Olin Shivers

BAE Systems

University of Pennsylvania

=

Greg Frazier Jothy Rosenber Jonathan Smith Greg Morrisett

Harvard

Also: Ben Karel, Benoit

Montagu Also: Gregory Malecha

Also: Tim Anderson, Chris White, ...

N
Core Principles

e Fine-grained compartmentalization: supported by hardware, with runtime
intents & security interlocks, without compromising performance

e Tagged data for compartmentalization and intent
eProgrammable Rulesets

eHardware Tag Management Unit for complete mediation on cycle-by-
cycle basis. Checking performed in parallel to mainline for high
performance.

e Radical Co-design for pervasive verification: define clean semantics and
omit complicating features to make verification tractable

e Prevention-in-Depth: radical decomposition of systems into mutually
suspicious components with separated privileges.

BAE SYSTEMS

Topic Areas

1. Tagged Processor Architectures

2. “Zero-Kernel” Operating Systems
1. Strong compartmentalization
2. Mutual suspicion

3. Programming Languages
1. Tempest — low-level systems programming (C-like)

2. Breeze — high-level applications programming (ML/
Haskell-like)

4. System-wide application of Formal Methods
1. Design for verifiability

BAE SYSTEMS

HARDWARE

BAE SYSTEMS

PC

|-Store

" Register File

AL

Memory

security
violation

Me
A
|Principa|| |_| PC |
 J
|-Store
 /
Register File
|
L ‘ ‘ Memory
AL“
I
Y _l
~—1 TMU
Combine | \‘;R/
Tags T

BAE SYSTEMS

* Process tags in parallel with
datapath

— No impact on cycle time

* Leverage existing
speculation/in-order
exception and retirement

hardware

* Implement with fast, small
Tag Management Unit

— Similar in size/complexity to security
TLB violation

11/2/2010 CRASH SAFE

M
<
J\?
|Principa|| | | PC |
 J
|-Store
Y
Register File
|
L ‘ ‘ Memory
AL“
‘ I
Y _l
~—1 TMU
Combine | \‘;';/
Tags T

10

BAE SYSTEMS

naun] F 00 00 8 N0
SHICI &Y G
. . of NS e,

27 ey

A taste of uBreeze

BAE SYSTEMS

uBreeze overview

e Straw-man design — just to gain experience

* An untyped, CBV lambda-calculus with

— information-flow tracking a la JIF/JFlow

* every value is tagged with a label specifying who may
read (eliminate) it

— communication channels (elided for today) and
threads (soon)

BAE SYSTEMS

Syntax

2 — expressions

const constant

T variable

AZ.€ bindzine abstraction

€1 € application

(e1,e2) pairing

e.l first projection

e.2 second projection
eV L raise label

e\ L lower label

e < L check label
authAine change authorization
block Line locally join pc label

.
Evaluation -

current PClabel current environment

(binding variables to
: result
current Qty\ th7alue5) (atom = value+label)

N
A,pe,pboeld,a

current store new store

|

expression being evaluated

BAE SYSTEMS
o

Labels

confidentiality part integrity part

~ N\

[E: {Benjamin: Simon, Steve}, I: ...]

[\

owner
readers

BAE SYSTEMS

Labels

Decentralized Label Model (Liskov/Myers)
Multiple owners, each asserting a constraint on who may read

owner
readers

| !

[E: {Benjamin: Simon, Steve;
Stephanie: Simon, John, Mary}, I: ...]

[NI/

owner
readers

BAE SYSTEMS
SN L WA

Authority

A = authority
o specified principal

Values and Atoms

BAE SYSTEMS
29 SR e W

const

(Aa P, AZEG)

(ala (1/2)
&c

val

value
constant
closure
pair
channel identifier

atom
labeled value

BAE SYSTEMS
N Yoy

Evaluation

EVAL_CONST

A,pc,pt o,c | o, capc
p(z) = valL
Aypc,pt o,z | o,ve(pcV L)

EVAL_VAR

EVAL_ABS

A,pc,pto,(Az.e) | o,(A, p, A\z.e)apc

Aa pc, p - g, € ‘U’ 01, (Ala P1, ASB.B)@Ll
A can eliminate L

Apc,pt oy, e | 02,0

A, pe, (p1,x: - og,block Ly ine ,
pc, (p1,2: ap) o2 1inel o3, ag VAL App

A,pc,pl—a, €1 €2 »U«0'3,6l3
A,pcV Lpto,e | d,a

EvAL_BLOCK
A,pc,pt o,block Line | ¢/, a

BAE SYSTEMS
4 IR e VA

Evaluation

Apc,pto,el o, val’
Apc,pto,eV Lo ve(l'VL)
AapC,PF g, € ~U«0",’U@L,

LI'\pC (L' A\L)
A,pc,pko,e AL o’,ve(L/ A L)
AaPC,Pl_ g, € UO',,’U@L’

L'C L
A,PCaP}_U,e < L~U«0”,’U@L’

EVAL_RAISE

EVAL_LOWER

EvAL_CHECK

Al,pc,pto,ell o, a
e P v EvVAL_AUuTH

A pc,pto,authA’ine l o/,a

BAE SYSTEMS

Example

val bool =
auth BOOL in
let label private =
[E: BOOL:BOOL | * & I: * : {}] in
let label public =
[E: * ¢ * & I: * : {}] in
{ true = (\t £. t) \/ private
; false = (\t f. f) \/ private
; ifthen = (\b t £f.
let label L =
[E: BOOL : * | {} & I: * : *]
in (b t £) /\ L)
\/ public
} \/ public

