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… or, what am I doing hanging out with these people? 

termination and liveness of imperative programs, shape analysis 
and heap space bounds, ranking function synthesis 

program analysis, model checking and verification for systems 
code, refinement types, liquid types, decision procedures 

And myself?  
functional programming, type systems, type inference, dependent types, 
semantics and parametricity, Coq, Haskell! 
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The jungle of termination/totality analysis 

“Guarded recursion” (my own term) 
- sized types [Hughes et al, Abel] 
- modalities for recursion [eg Nakano] 

Structural recursion 
- Conor McBride 
- offered in Coq and Agda 
- also Bove & Capretta transformation 

Dependent types  
- programming with well-founded 

relations (think “ranking functions”) 
- Coq, Agda, DML [Xi]  

Terminator 
- termination analysis for imperative programs 
- “disjunctive invariants” and Ramsey’s theorem 
- [Cook, Podelski, Rybalchenko] 

Size-change principle  
- [Jones, Sereni, Bohr] 
- a control flow analysis essentially 
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A dichotomy? 

“Guarded recursion”, structural recursion, dependent types 

Terminator and disjunctive  
invariants, size-change 

-  Mostly fully manual 
-  Programmable 
-  Declarative specification 
-  Often tedious to come up with 

a WF relation or convince type 
checker (i.e. the techniques don’t 
make proving totality easier, they 
just make it possible!)  

-  Mostly fully automatic 
-  Not programmable 
-  No declarative specs 
-  Often easy for the tool to synthesize 

the termination argument 

Today I will have a go at combining both worlds 
WARNING: very fresh (i.e. airplane-fresh) ideas! 
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The idea: one new typing rule for totality 

𝑇1 … 𝑇𝑛 well−founded binary relations 

𝑑𝑗 𝑎, 𝑏 = 𝑎 <𝑇1
𝑏 ∨  … ∨ 𝑎 <𝑇𝑛

𝑏
    
    

𝛤, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈),

                    (𝑥: *𝑦: 𝑇  𝑑𝑗 𝑦, 𝑜𝑙𝑑  ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒 ∶ 𝑈

𝛤 ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈
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Example 

let rec flop (u,v) = 
  if v > 0 then flop (u,v-1) else  
  if u > 1 then flop (u-1,v) else 1 

Terminating,  
by lexicographic pair order 

Γ, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇  𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), (𝑥: *𝑦: 𝑇  𝑑𝑗 𝑦, 𝑜𝑙𝑑  ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒: 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈
 

Consider 𝑇1 𝑥 𝑦 ≡ 𝑓𝑠𝑡 𝑥 < 𝑓𝑠𝑡 𝑦  
Consider 𝑇2 𝑥 𝑦 ≡ 𝑠𝑛𝑑 𝑥 < 𝑠𝑛𝑑 𝑦         [NOTICE: No restriction on fst components!] 
Subtyping constraints (obligations) arising from program 

𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 , 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣       

 𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 , 𝑢 > 1 ⟹  𝑑𝑗 (𝑢 − 1, 𝑣 , (𝑜𝑢, 𝑜𝑣))     

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 , 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣  

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 , 𝑢 > 1 ⟹  𝑑𝑗( 𝑢 − 1, 𝑣 , 𝑜𝑢, 𝑜𝑣 ) 
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Or … 

 

just call Liquid Types and it will do all that for you! 

 

http://pho.ucsd.edu/liquid/demo/index2.php 

 

 

… after you have applied a transformation to the original 
program that I will describe later on 

http://pho.ucsd.edu/liquid/demo/index2.php
http://pho.ucsd.edu/liquid/demo/index2.php
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Background 

 

Structural and guarded recursion, dependent types and 
well-founded relations in Coq 

 

 

We will skip these. You already know 
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Background: disjunctive invariants 

Ramsey’s theorem 

Every infinite complete graph whose edges are colored with 
finitely many colors contains an infinite monochromatic path.  

 

 

Podelski & Rybalchenko characterization of WF relations 

Relation 𝑅 is WF iff there exist WF relations 𝑇1 … 𝑇𝑛 such that 
𝑅+ ⊆ 𝑇1 ∪  … ∪ 𝑇𝑛 
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Background: How Terminator works? 

 Transform a program, and assert/infer invariants!   

 

 

 

 

 Invariant between x and oldx 

    represents any point of R+! 

 

 We need non-deterministic 

    choice to allow the “start point” to be anywhere 

int x = 50; 
while (x > 0) do {  
   …  
   x = x - 1; 
} 

bool copied = false;  
int oldx;  
int x = 50; 
while (x > 0) do {  
  if copied then  
    assert (x <_{T_i} oldx) 
  else  
    if * then {  
   copied=true; oldx=x;  
    } 
   …  
   x = x - 1; 
} 
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In a functional setting: a first attempt 

 Let’s consider only divergence from recursion 

 Negative recursive types, control ← Not well-thought yet 

 The “state” is the arguments of the recursive function 

 Hence: 

 

 

 

let rec f x =  
  if x==0 then 41 else f (x-1) + 1  

let rec f x =  
  if * then 
    if x==0 then 41 else f (x-1) + 1 
  else 
    f’ x x 
let rec f’ oldx x = 
    if x==0 then 41 else f’ oldx (x-1) + 1 
   

But where is the ASSERT? 

In particular f 
has to accept  
x ≤ oldx 

the first time. 
But in all 

subsequent calls 
it must be  
x < oldx 
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In a functional setting: a better attempt 

 Just inline the first call to f’ to expose subsequent calls:  

 

 

 

let rec f x =  
  if x==0 then 41 else f (x-1) + 1  

let rec f x =  
  if * then  
   if x==0 then 41 else f (x-1) + 1 
  else  
   f’ x x if x==0 then 41 else f’ x (x-1) + 1 
let rec f’ oldx x = 
    assert (oldx <_{T_i} x) 
    if x==0 then 41 else f’ oldx (x-1) + 1 
   

Starts to look like 
something a refinement 

type system could express 
… but can we dispense 

with rewriting? 
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A special typing rule, to avoid rewriting  
 

 

Γ, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), (𝑥: *𝑦: 𝑇  𝑑𝑗 𝑦, 𝑜𝑙𝑑  ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒: 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈
 

 

 

 A declarative spec of termination with disjunctive invariants 
 

 Given the set 𝑇𝑖  the typing rule can be checked or inferred 
 E.g. inference via Liquid Types [Ranjit] 

 
 It’s a cool thing: programmer needs to come up with simple WF 

relations (which are also easy to synthesize [Byron])  
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Bumping up the arguments 

let rec flop (u,v) = 
  if v > 0 then flop (u,v-1) else  
  if u > 1 then flop (u-1,big) else 1 

Γ, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇  𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), (𝑥: *𝑦: 𝑇  𝑑𝑗 𝑦, 𝑜𝑙𝑑  ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒: 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈
 

Consider 𝑇1 (𝑥, 𝑦) ≡ 𝑓𝑠𝑡 𝑥 < 𝑓𝑠𝑡 𝑦  
Consider 𝑇2 (𝑥, 𝑦) ≡ 𝑠𝑛𝑑 𝑥 < 𝑠𝑛𝑑 𝑦          
Subtyping constraints (obligations) arising from program 

𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣       

 𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1 ⟹  𝑑𝑗 (𝑢 − 1, 𝒃𝒊𝒈 , (𝑜𝑢, 𝑜𝑣))     

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣  

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1 ⟹  𝑑𝑗( 𝑢 − 1, 𝒃𝒊𝒈 , 𝑜𝑢, 𝑜𝑣 ) 
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One way to strengthen the rule with invariants 

let rec flop (u,v) = 
  if v > 0 then flop (u,v-1) else 
  if u > 1 then flop (u-1,big) else 1 

Consider 𝑇1 (𝑥, 𝑦) ≡ 𝑓𝑠𝑡 𝑥 < 𝑓𝑠𝑡 𝑦  
Consider 𝑇2 (𝑥, 𝑦) ≡ 𝑠𝑛𝑑 𝑥 < 𝑠𝑛𝑑 𝑦                           [NOTICE: No restriction on fst!] 
Consider  𝑷(𝒙, 𝒚)  ≡ 𝒇𝒔𝒕 𝒙 ≤ 𝒇𝒔𝒕 𝒚                            [Synthesized or provided] 
Subtyping constraints (obligations) arising from program: 

𝑃 (𝑢, 𝑣), (𝑜𝑢, 𝑜𝑣)  ∧  𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑃 (𝑢, 𝑣 − 1), (𝑜𝑢, 𝑜𝑣)  ∧ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣  

𝑃 𝑢, 𝑣 , (𝑜𝑢, 𝑜𝑣)  ∧  𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1

⟹ 𝑃 (𝑢 − 1, 𝑏𝑖𝑔), (𝑜𝑢, 𝑜𝑣)  ∧ 𝑑𝑗 (𝑢 − 1, 𝑏𝑖𝑔 , (𝑜𝑢, 𝑜𝑣)) 

𝑃 𝑢, 𝑣 , (𝑜𝑢, 𝑜𝑣 )  ∧ 𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑃 (𝑢, 𝑣 − 1), (𝑜𝑢, 𝑜𝑣)  ∧ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣  

𝑃 (𝑢, 𝑣), (𝑜𝑢, 𝑜𝑣)  ∧ 𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1

⟹ 𝑃 (𝑢 − 1, 𝑏𝑖𝑔), (𝑜𝑢, 𝑜𝑣 )  ∧ 𝑑𝑗( 𝑢 − 1, 𝑏𝑖𝑔 , 𝑜𝑢, 𝑜𝑣 ) 

Γ, (𝑜𝑙𝑑: 𝑇), 𝑔: *𝑥: 𝑇 | 𝑷 𝒙, 𝒐𝒍𝒅  ∧ 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), 

                                 (𝑥: 𝑦: 𝑇 𝑷 𝒚, 𝒐𝒍𝒅 ∧ 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑 +) ⊢ 𝑒 ∶ 𝑈    
 𝑷 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒   

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 ∶ 𝑇 → 𝑈
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Scrap your lexicographic orders? ...  

It is arguably very simple to see what 𝑇1 … 𝑇𝑛 are but not 

as simple to provide a strong enough invariant 𝑃 

 

But the type-system approach may help find this 

P interactively from the termination constraints? 

 

… or Liquid Types can infer it for us 

𝑃 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒

Γ, (𝑜𝑙𝑑: 𝑇), 𝑔: *𝑥: 𝑇 | 𝑷 𝒙, 𝒐𝒍𝒅  ∧ 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), 

                                          (𝑥: 𝑦: 𝑇 𝑷 𝒚, 𝒐𝒍𝒅 ∧ 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑 +) ⊢ 𝑒 ∶ 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 ∶ 𝑇 → 𝑈
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What next? 
 More examples. Is it easy for the programmer? 

 
 Formal soundness proof 

 Move from trace-based semantics (Terminator) to denotational? 
 

 Integrate in a refinement type system or a dependently typed 
language  
 Tempted by the Program facilities for extraction of obligations in Coq  
 Is there a constructive proof of (some restriction of) disjunctive WF 

theorem? If yes, use it to construct the WF ranking relations in Coq 
 Applicable to Agda, Trellys? 
 Liquid types. Demo works for many examples via the transformation 

 

 Negative recursive datatypes, mutual recursion …   
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Thanks!  

 

 

A new typing rule for termination  

based on disjunctive invariants 

 

New typing rule serves as: 

 a declarative specification of that method, or 

 the basis for a tool that could potentially increase the 
programmability of totality checking 

 

 


