
Type-based termination analysis
with disjunctive invariants

Dimitrios Vytiniotis, MSR Cambridge

with Byron Cook (MSR Cambridge) and Ranjit Jhala (UCSD)

IFIP WG 2.8, Austin TX, March 2011

1

… or, what am I doing hanging out with these people?

termination and liveness of imperative programs, shape analysis
and heap space bounds, ranking function synthesis

program analysis, model checking and verification for systems
code, refinement types, liquid types, decision procedures

And myself?
functional programming, type systems, type inference, dependent types,
semantics and parametricity, Coq, Haskell!

2

The jungle of termination/totality analysis

“Guarded recursion” (my own term)
- sized types [Hughes et al, Abel]
- modalities for recursion [eg Nakano]

Structural recursion
- Conor McBride
- offered in Coq and Agda
- also Bove & Capretta transformation

Dependent types
- programming with well-founded

relations (think “ranking functions”)
- Coq, Agda, DML [Xi]

Terminator
- termination analysis for imperative programs
- “disjunctive invariants” and Ramsey’s theorem
- [Cook, Podelski, Rybalchenko]

Size-change principle
- [Jones, Sereni, Bohr]
- a control flow analysis essentially

3

A dichotomy?

“Guarded recursion”, structural recursion, dependent types

Terminator and disjunctive
invariants, size-change

-  Mostly fully manual
-  Programmable
-  Declarative specification
-  Often tedious to come up with

a WF relation or convince type
checker (i.e. the techniques don’t
make proving totality easier, they
just make it possible!)

-  Mostly fully automatic
-  Not programmable
-  No declarative specs
-  Often easy for the tool to synthesize

the termination argument

Today I will have a go at combining both worlds
WARNING: very fresh (i.e. airplane-fresh) ideas!

4

The idea: one new typing rule for totality

𝑇1 … 𝑇𝑛 well−founded binary relations

𝑑𝑗 𝑎, 𝑏 = 𝑎 <𝑇1
𝑏 ∨ … ∨ 𝑎 <𝑇𝑛

𝑏

𝛤, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈),

 (𝑥: *𝑦: 𝑇 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒 ∶ 𝑈

𝛤 ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈

5

Example

let rec flop (u,v) =
 if v > 0 then flop (u,v-1) else
 if u > 1 then flop (u-1,v) else 1

Terminating,
by lexicographic pair order

Γ, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), (𝑥: *𝑦: 𝑇 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒: 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈

Consider 𝑇1 𝑥 𝑦 ≡ 𝑓𝑠𝑡 𝑥 < 𝑓𝑠𝑡 𝑦
Consider 𝑇2 𝑥 𝑦 ≡ 𝑠𝑛𝑑 𝑥 < 𝑠𝑛𝑑 𝑦 [NOTICE: No restriction on fst components!]
Subtyping constraints (obligations) arising from program

𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 , 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣

 𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 , 𝑢 > 1 ⟹ 𝑑𝑗 (𝑢 − 1, 𝑣 , (𝑜𝑢, 𝑜𝑣))

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 , 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 , 𝑢 > 1 ⟹ 𝑑𝑗(𝑢 − 1, 𝑣 , 𝑜𝑢, 𝑜𝑣)

6

Or …

just call Liquid Types and it will do all that for you!

http://pho.ucsd.edu/liquid/demo/index2.php

… after you have applied a transformation to the original
program that I will describe later on

http://pho.ucsd.edu/liquid/demo/index2.php
http://pho.ucsd.edu/liquid/demo/index2.php

7

Background

Structural and guarded recursion, dependent types and
well-founded relations in Coq

We will skip these. You already know

8

Background: disjunctive invariants

Ramsey’s theorem

Every infinite complete graph whose edges are colored with
finitely many colors contains an infinite monochromatic path.

Podelski & Rybalchenko characterization of WF relations

Relation 𝑅 is WF iff there exist WF relations 𝑇1 … 𝑇𝑛 such that
𝑅+ ⊆ 𝑇1 ∪ … ∪ 𝑇𝑛

9

Background: How Terminator works?

 Transform a program, and assert/infer invariants!

 Invariant between x and oldx

 represents any point of R+!

 We need non-deterministic

 choice to allow the “start point” to be anywhere

int x = 50;
while (x > 0) do {
 …
 x = x - 1;
}

bool copied = false;
int oldx;
int x = 50;
while (x > 0) do {
 if copied then
 assert (x <_{T_i} oldx)
 else
 if * then {
 copied=true; oldx=x;
 }
 …
 x = x - 1;
}

10

In a functional setting: a first attempt

 Let’s consider only divergence from recursion

 Negative recursive types, control ← Not well-thought yet

 The “state” is the arguments of the recursive function

 Hence:

let rec f x =
 if x==0 then 41 else f (x-1) + 1

let rec f x =
 if * then
 if x==0 then 41 else f (x-1) + 1
 else
 f’ x x
let rec f’ oldx x =
 if x==0 then 41 else f’ oldx (x-1) + 1

But where is the ASSERT?

In particular f
has to accept
x ≤ oldx

the first time.
But in all

subsequent calls
it must be
x < oldx

11

In a functional setting: a better attempt

 Just inline the first call to f’ to expose subsequent calls:

let rec f x =
 if x==0 then 41 else f (x-1) + 1

let rec f x =
 if * then
 if x==0 then 41 else f (x-1) + 1
 else
 f’ x x if x==0 then 41 else f’ x (x-1) + 1
let rec f’ oldx x =
 assert (oldx <_{T_i} x)
 if x==0 then 41 else f’ oldx (x-1) + 1

Starts to look like
something a refinement

type system could express
… but can we dispense

with rewriting?

12

A special typing rule, to avoid rewriting

Γ, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), (𝑥: *𝑦: 𝑇 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒: 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈

 A declarative spec of termination with disjunctive invariants

 Given the set 𝑇𝑖 the typing rule can be checked or inferred
 E.g. inference via Liquid Types [Ranjit]

 It’s a cool thing: programmer needs to come up with simple WF

relations (which are also easy to synthesize [Byron])

13

Bumping up the arguments

let rec flop (u,v) =
 if v > 0 then flop (u,v-1) else
 if u > 1 then flop (u-1,big) else 1

Γ, 𝑜𝑙𝑑: 𝑇 , 𝑔: 𝑥: 𝑇 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈), (𝑥: *𝑦: 𝑇 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑+ ⊢ 𝑒: 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 : 𝑇 → 𝑈

Consider 𝑇1 (𝑥, 𝑦) ≡ 𝑓𝑠𝑡 𝑥 < 𝑓𝑠𝑡 𝑦
Consider 𝑇2 (𝑥, 𝑦) ≡ 𝑠𝑛𝑑 𝑥 < 𝑠𝑛𝑑 𝑦
Subtyping constraints (obligations) arising from program

𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣

 𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1 ⟹ 𝑑𝑗 (𝑢 − 1, 𝒃𝒊𝒈 , (𝑜𝑢, 𝑜𝑣))

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣

𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1 ⟹ 𝑑𝑗(𝑢 − 1, 𝒃𝒊𝒈 , 𝑜𝑢, 𝑜𝑣)

14

One way to strengthen the rule with invariants

let rec flop (u,v) =
 if v > 0 then flop (u,v-1) else
 if u > 1 then flop (u-1,big) else 1

Consider 𝑇1 (𝑥, 𝑦) ≡ 𝑓𝑠𝑡 𝑥 < 𝑓𝑠𝑡 𝑦
Consider 𝑇2 (𝑥, 𝑦) ≡ 𝑠𝑛𝑑 𝑥 < 𝑠𝑛𝑑 𝑦 [NOTICE: No restriction on fst!]
Consider 𝑷(𝒙, 𝒚) ≡ 𝒇𝒔𝒕 𝒙 ≤ 𝒇𝒔𝒕 𝒚 [Synthesized or provided]
Subtyping constraints (obligations) arising from program:

𝑃 (𝑢, 𝑣), (𝑜𝑢, 𝑜𝑣) ∧ 𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑃 (𝑢, 𝑣 − 1), (𝑜𝑢, 𝑜𝑣) ∧ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣

𝑃 𝑢, 𝑣 , (𝑜𝑢, 𝑜𝑣) ∧ 𝑢, 𝑣 = 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1

⟹ 𝑃 (𝑢 − 1, 𝑏𝑖𝑔), (𝑜𝑢, 𝑜𝑣) ∧ 𝑑𝑗 (𝑢 − 1, 𝑏𝑖𝑔 , (𝑜𝑢, 𝑜𝑣))

𝑃 𝑢, 𝑣 , (𝑜𝑢, 𝑜𝑣) ∧ 𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑣 > 0 ⟹ 𝑃 (𝑢, 𝑣 − 1), (𝑜𝑢, 𝑜𝑣) ∧ 𝑑𝑗 𝑢, 𝑣 − 1 , 𝑜𝑢, 𝑜𝑣

𝑃 (𝑢, 𝑣), (𝑜𝑢, 𝑜𝑣) ∧ 𝑑𝑗 𝑢, 𝑣 , 𝑜𝑢, 𝑜𝑣 ∧ 𝑢 > 1

⟹ 𝑃 (𝑢 − 1, 𝑏𝑖𝑔), (𝑜𝑢, 𝑜𝑣) ∧ 𝑑𝑗(𝑢 − 1, 𝑏𝑖𝑔 , 𝑜𝑢, 𝑜𝑣)

Γ, (𝑜𝑙𝑑: 𝑇), 𝑔: *𝑥: 𝑇 | 𝑷 𝒙, 𝒐𝒍𝒅 ∧ 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈),

 (𝑥: 𝑦: 𝑇 𝑷 𝒚, 𝒐𝒍𝒅 ∧ 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑 +) ⊢ 𝑒 ∶ 𝑈
 𝑷 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 ∶ 𝑇 → 𝑈

15

Scrap your lexicographic orders? ...

It is arguably very simple to see what 𝑇1 … 𝑇𝑛 are but not

as simple to provide a strong enough invariant 𝑃

But the type-system approach may help find this

P interactively from the termination constraints?

… or Liquid Types can infer it for us

𝑃 𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑒

Γ, (𝑜𝑙𝑑: 𝑇), 𝑔: *𝑥: 𝑇 | 𝑷 𝒙, 𝒐𝒍𝒅 ∧ 𝑑𝑗 𝑥, 𝑜𝑙𝑑 → 𝑈),

 (𝑥: 𝑦: 𝑇 𝑷 𝒚, 𝒐𝒍𝒅 ∧ 𝑑𝑗 𝑦, 𝑜𝑙𝑑 ∨ 𝑦 = 𝑜𝑙𝑑 +) ⊢ 𝑒 ∶ 𝑈

Γ ⊢ 𝑓𝑖𝑥 𝜆𝑔. 𝜆𝑥. 𝑒 ∶ 𝑇 → 𝑈

16

What next?
 More examples. Is it easy for the programmer?

 Formal soundness proof

 Move from trace-based semantics (Terminator) to denotational?

 Integrate in a refinement type system or a dependently typed
language
 Tempted by the Program facilities for extraction of obligations in Coq
 Is there a constructive proof of (some restriction of) disjunctive WF

theorem? If yes, use it to construct the WF ranking relations in Coq
 Applicable to Agda, Trellys?
 Liquid types. Demo works for many examples via the transformation

 Negative recursive datatypes, mutual recursion …

17

Thanks!

A new typing rule for termination

based on disjunctive invariants

New typing rule serves as:

 a declarative specification of that method, or

 the basis for a tool that could potentially increase the
programmability of totality checking

