
Combining languages and SMT solvers
an EDSL study

Don Stewart | WG 2.8 | March 2011

© 2011 Galois, Inc. All rights reserved.

The Productivity Challenge in Software

 As John Hughes pointed out yesterday, we must climb a
productivity cliff in software construction if we are to build
the multi-million line codebases industry demands, when
labor is expensive

 The “FP” approach:
– Automate code generation: Embedded DSLs

– Automate verification and validation: automated testing +
solvers + provers

 This talk:
– Making high powered SMT solvers easier to program by

mortal programmers (i.e. without an FM background)

– How? Program them with an EDSL of course!

© 2011 Galois, Inc. All rights reserved.

Background: SAT solvers

 SAT: finding if a formula has a model
• Find an assignment to Boolean variables to make proposition true

• The classic NP-complete problem

• And now routinely fast in practice

 10^300 states are commonly handled these days

 Can handle booleans, vectors of booleans, and encodings
to bounded types

 Reals, recursive data types ... too hard

 Simple interface (actually returns a Bool, but you then ask
for the evidence...):
– sat :: Proposition → Maybe Model

© 2011 Galois, Inc. All rights reserved.

SMT solvers: SAT for programmers

 Booleans are (not so) great, but...

 SMT solvers add pluggable theories to SAT
• Equality

• Linear arithmetic, real arithmetic, ...

• Extensional (applicative) arrays

• Sized bit vectors

• Data types (sums, products, record types, recursive types)

• Lambdas...

 Use clever theory combination theories (combining two
decidable theories usually yields a decidable theory)

 Solve for types of variables that are useful to programmers

© 2011 Galois, Inc. All rights reserved.

SMT Solvers: Big Hammers for Solving

 Declarative programming:
• Describe a problem as a SAT problem, ask the solver for solutions

• Massively efficient search in your programming language?

• Hover on the limits of decidability

 Make NP-complete problems look like nails
• Verifying large sets of constraints and pre/post-conditions satisfy a

property – e.g. demo by Jean-Christophe on Tuesday

• Generating test cases from models

• Solving scheduling problems – Eaton's garbage truck controllers,
Galois' flight hardware monitors

• Equivalence checking: Cryptol's VHDL ↔ src checker

• Easier things: Loco game solvers? Checking business compliance
rules

© 2011 Galois, Inc. All rights reserved.

© 2011 Galois, Inc. All rights reserved.

SMT solvers as a programming paradigm

 Not programming in a functional style anymore:
– Take a problem you want to solve

– Identify a set of variables that could represent a solution

– Write down all the constraints on those variables that a
solution must satisfy

– Add any other facts you know about

– Blast it with the solver.

 Feels like a meta-programming game (recursing over a
structure of a problem AST, yielding constraints)

© 2011 Galois, Inc. All rights reserved.

Aside: Insights into a healthy technology community

 Yearly shootouts (SMT-COMP) as part of conferences

 Results published, prizes awarded

 Shared, large suite of benchmarks

 Many different problem divisions – based on theory type –
so easy to concentrate on innovation in one area at a time

 A common input language – SMT-LIB – with solvers also
accepting their own custom languages

 “SMT-LIB currently contains 93,480 benchmarks (totalling 16.2 GB) in 325
families over 22 logics”

 Thought: Modify the ICFP contest to directly improve the state of the FP
ecosystem...

 Thought 2: Use Fritz's regex to enumerate solver ASTs for those guys...

© 2011 Galois, Inc. All rights reserved.

So... how do we get that power into our
programming languages?

 SMT-LIB input source (at least, Yices version):

(define p::bool)

(define q::bool)

(define r::bool)

(assert (=> (and (=> p q) (=> q r)) (=> p r)))

 Programmers don't want to switch tools, so write in an
existing notation they understand: their language:

\p q r -> (p → q && q → r) → (p → r)

Goal: make the later notation work. <quick demo>

© 2011 Galois, Inc. All rights reserved.

Challenges for the embedding: funky SMT type systems

 As Jean-Christophe mentioned on Monday, SMT solvers
seem to have many-sorted (ad hoc-ish) type systems

 Some dependently typed features, known holes and
unsoundness – ill-typed programs accepted by type
checkers, and fail with runtime assertions or segfaults

 Need to embed a model of the solver's type system
accurately into a sound logic (host language's type system)

© 2011 Galois, Inc. All rights reserved.

EDSLs SMT Design Goals

 Type inference

 Native language libraries, functions and types

 Seamless interoperability with the host language

 Clean encoding of solution variables

 Efficient, safe (don't trust SMT type checker, if it has one)

 Extraction of models into usable form

 Reduce amount of functions exposed by solver, by an
order of magnitude

 Strategy: a typed, polymorphic, HOAS-style EDSL with top-
level lambda-bound variables to represent holes, and type-
safe optimization layer

© 2011 Galois, Inc. All rights reserved.

Implementation

© 2011 Galois, Inc. All rights reserved.

Decide on how to interact with a solver

 FFI bindings vs scripted processes

 Standard SMT-LIB format (less expressive) vs custom
solver languages accepting extensions

 No standard way to extract results from solvers:
– Get a model

– Find counter-examples

– Generate multiple solutions

– Marshalling function types...

 First cut: one solver (Yices), with FFI bindings

 Next cut: many solvers, language AST input

 But one simple surface EDSL

© 2011 Galois, Inc. All rights reserved.

Tool architecture

© 2011 Galois, Inc. All rights reserved.

Layer 1: bindings

Take the 160 functions and dozen types defined in the Yices
C interface, and bind them to Haskell via the FFI:

data YContext

foreign import ccall unsafe "yices_mk_true"

 c_yices_mk_true :: Ptr YContext -> IO (Ptr YExpr)

foreign import ccall unsafe "yices_mk_bool_var"

 c_yices_mk_bool_var :: Ptr YContext -> CString -> IO (Ptr YExpr)

foreign import ccall unsafe "yices_mk_and"

 c_yices_mk_and :: Ptr YContext -> Ptr (Ptr YExpr) -> CUInt -> IO
(Ptr Yexpr)

foreign import ccall unsafe "yices_assert"

 c_yices_assert :: Ptr YContext -> Ptr YExpr -> IO ()

foreign import ccall unsafe "yices_check"

 c_yices_check :: Ptr YContext -> IO YBool

© 2011 Galois, Inc. All rights reserved.

Results of Layer 1

 We can now build ASTs in Yices, assert expressions, and
solve them

 Downsides: its a fine, unsafe imperative language
– Exactly the same as programming in C

– Fully imperative, no resource safety

– More type safe than C, but only just...

 So next up, retain the imperative layer, but use Haskell
types and add resource safety

© 2011 Galois, Inc. All rights reserved.

Layer 2: native types + resource safety

data Context = Context { yContext :: ForeignPtr YContext

 , yDepth :: !(MVar Integer) }

mkContext :: IO Context

mkContext = do

 ptr <- c_yices_mk_context

 fp <- F.newForeignPtr ptr (c_yices_del_context ptr)

 n <- newMVar 0

 return $! Context fp n

assert :: Context -> Expr -> IO ()

assert c e = withForeignPtr (yContext c) $ \cptr ->

 c_yices_assert cptr (unExpr e)

© 2011 Galois, Inc. All rights reserved.

Layer 2: native types + resource safety

newtype Expr = Expr { unExpr :: Ptr YExpr }

mkTrue :: Context -> IO Expr

mkTrue c = withForeignPtr (yContext c) $ \cptr ->

 Expr <$> c_yices_mk_true cptr

mkBool :: Context -> String -> IO Expr

mkBool c n =

 withCString n $ \cstr ->

 withForeignPtr (yContext c) $ \cptr ->

 Expr <$> c_yices_mk_bool_var cptr cstr

mkAnd :: Context -> [Expr] -> IO Expr

mkIte :: Context -> Expr -> Expr -> Expr -> IO Expr

© 2011 Galois, Inc. All rights reserved.

Note: throw away the iterator API

getDecls :: Context -> IO [Decl]

getDecls c = do

 i <- newIterator c

 go i

 where

 go i = unsafeInterleaveIO $ do

 b <- iteratorHasNext i

 if b then do

 d <- iteratorNext i

 ds <- go i

 return (d:ds)

 else

 return []

© 2011 Galois, Inc. All rights reserved.

Story so far...

done

© 2011 Galois, Inc. All rights reserved.

Next : Step into the effect-free world

 Build an AST representing the proposition expression

 Interpret or compile it, to yield its effects on the SMT solver

 Simple API:
– data Exp t

– solve :: Exp t → Result

 Not quite so simple:
– Free variables in proposition mapped to lambda-bound

parameterers to AST

– Bounded polymorphic functions, need EDSL-level type
classes

– Should be HOAS

– Type level naturals for bit vector operations

 Design customized version of Chakravarty's CUDA
“accelerate” EDSL (both layers)

© 2011 Galois, Inc. All rights reserved.

Primops GADT for an SMT solver

data PrimFun sig where

 PrimLt :: ScalarType a -> PrimFun ((a, a) -> Bool)

 PrimGt :: ScalarType a -> PrimFun ((a, a) -> Bool)

 PrimAdd :: NumType a -> PrimFun ((a, a) -> a)

 PrimMul :: NumType a -> PrimFun ((a, a) -> a)

 PrimLOr :: PrimFun ((Bool, Bool) -> Bool)

 PrimLNot :: PrimFun (Bool -> Bool)

 PrimBVXor :: PrimFun ((BitVector,BitVector) -> BitVector)

 PrimBVNot :: PrimFun (BitVector -> BitVector)

 PrimBVSL0 :: PrimFun ((BitVector,Int) -> BitVector)

© 2011 Galois, Inc. All rights reserved.

Layer 3: an expression AST

Glue together PrimFuns in interesting ways:

 Application of PrimFuns represented in saturated form

 No lambdas (undecidable)

 Variables represented by typed de Bruijn index into an
environment

– At this layer they're (typed) numbers, they'll be free variables
on the surface layer

 Only scalar literals allowed (for now)

 Explicit variables with tags makes code generation easier

© 2011 Galois, Inc. All rights reserved.

Nameless (de Bruijn) AST

data OpenExp env t where

 Var :: IsAType t

 => Idx env t

 -> OpenExp env t

 OConst :: (IsScalar t)

 => t

 -> OpenExp env t

 OPrimApp :: PrimFun (a -> r)

 -> OpenExp env a

 -> OpenExp env r

© 2011 Galois, Inc. All rights reserved.

What about bindings?

 SMT solver expressions have N free variables,
representing variables for the solver to search on

 Represented in HOAS as a function:
– \p q r → … stuff with p q r ….

 So SMT programs have variadic type, depending on the
number of free variables

 Should be no truly “free” variables in body of expression

 So represent expression language as two layers: body and
binders

© 2011 Galois, Inc. All rights reserved.

What about bindings?

data OpenProg t where

 OP :: OFun t -> OpenProg t

type OFun t = OpenFun () t

data OpenFun env t where

 OBody :: OpenExp env t

 -> OpenFun env t

 OLam :: IsAType a

 => OpenFun (env, a) t

 -> OpenFun env (a -> t)

© 2011 Galois, Inc. All rights reserved.

Notes: Type-decorated AST

Want (bounded) polymorphic functions: (+), (*), shiftL, xor

Again, stealing from Chakravarty's accelerate EDSL,

 Decorate AST with type information

 And use new type classes hierarchy for EDSL types

 Reflects dictionaries into data, so we can pattern match
on them

© 2011 Galois, Inc. All rights reserved.

Type classes

© 2011 Galois, Inc. All rights reserved.

Type class reflection

data NonNumDict a where

 NonNumDict :: (Eq a, Ord a, Show a)

 => NonNumDict a

data IntegralDict a where

 IntegralDict :: (Bounded a, Enum a, Eq a, Ord a, Show a

 , Bits a, Integral a, Num a, Real a)

 => IntegralDict a

data IntegralType a where

 TypeInt :: IntegralDict Int -> IntegralType Int

 TypeInt8 :: IntegralDict Int8 -> IntegralType Int8

© 2011 Galois, Inc. All rights reserved.

Type class reflection: keep dictionaries
around

class (IsScalar a, IsNum a) => IsIntegral a where

 integralType :: IntegralType a

instance IsIntegral Int where

 integralType = TypeInt IntegralDict

instance IsIntegral BitVector where

 integralType = TypeVectorBool IntegralDict

instance IsIntegral Int8 where

 integralType = TypeInt8 IntegralDict

© 2011 Galois, Inc. All rights reserved.

Story so far...

done

done and
done

© 2011 Galois, Inc. All rights reserved.

But explicit variable binding are annoying

Want to just use host language's binding forms (let, lambda)

And not worry about substitution

However, still need the tagged variable representation for
easier manipulation

So translate from a HOAS-style represention into the de
Bruijn form

 - Chakravarty. “Converting a HOAS term GADT into a de Bruijn term
GADT” 2009

 - Atkey, Lindley, and Yallop. “Unembedding domain-specific languages.”
2009

© 2011 Galois, Inc. All rights reserved.

HOAS representation: expressions
Hides the environment

data Exp t where

 Tag :: IsAType t

 => Int –- binding site count

 -> Exp t

 Const :: IsScalar t

 => t

 -> Exp t

 PrimApp :: PrimFun (a -> r)

 -> Exp a

 -> Exp r

© 2011 Galois, Inc. All rights reserved.

HOAS representation: outermost binders

data Prog r where

 P :: Prog f r => f → Prog r

SMT solver programs are variadic – so use recursive
instances to convert from HOAS style to de Bruijn form,
one bind at a time...

(Same as Text.Printf variadic type trick)

convertAll :: Prog r -> OpenProg r

convertAll (P f) = OP $ convert EmptyLayout f

© 2011 Galois, Inc. All rights reserved.

Converting HOAS to de Bruijn environment

class Prog f r | f -> r where

 convert :: Layout env env -> f -> OpenFun env r

instance Prog (Exp b) b where

 convert lyt e = OBody (convertOpenExp lyt e)

instance (IsAType a, Prog f r)

 => Yices (Exp a -> f) (a -> r) where

 convert lyt f = OLam (convert lyt' (f a))

 where

 a = Tag (size lyt)

 lyt' = inc lyt `PushLayout` ZeroIdx

© 2011 Galois, Inc. All rights reserved.

Story so far...

Done

Also
done

Yep.
Done.

© 2011 Galois, Inc. All rights reserved.

Home stretch: smart constructors

mkAdd :: IsNum t => Exp t -> Exp t -> Exp t

mkAdd x y = PrimAdd numType `PrimApp` tup2 (x, y)

mkMul :: IsNum t => Exp t -> Exp t -> Exp t

mkMul x y = PrimMul numType `PrimApp` tup2 (x, y)

instance (IsNum t) => Num (Exp t) where

 (+) = mkAdd –- overloaded, bitvectors in IsNum

 (-) = mkSub

 (*) = mkMul

 negate x = 0 - x

© 2011 Galois, Inc. All rights reserved.

Home stretch: bit vectors

mkBVAnd :: Exp BitVector -> Exp BitVector -> Exp BitVector

mkBVAnd x y = PrimBVAnd `PrimApp` tup2 (x, y)

mkBVOr :: Exp BitVector -> Exp BitVector -> Exp BitVector

mkBVOr x y = PrimBVOr `PrimApp` tup2 (x, y)

instance Bits (Exp BitVector) where

 (.&.) = mkBVAnd

 (.|.) = mkBVOr

 xor = mkBVXor

 complement = mkBVNot

© 2011 Galois, Inc. All rights reserved.

Challenge : bit vector operations

Most bit vector operations care deeply about the size of the
vector coming in.

Need to statically enforce constraints:

 - Bit vector: (+), (-), (*), (<), (&&) etc.

Must be bitvector expressions of same size.

More interesting types: extracting sub-vectors

 “/a/ must a bitvector expression of size /n/ with begin < end < n.

 The result is the subvector slice a[begin .. end].”

© 2011 Galois, Inc. All rights reserved.

Home stretch: sigh: Eq, Ord, Bool

infix 4 ==*, /=*, <*, <=*, >*, >=*

(==*) :: (IsScalar t) => Exp t -> Exp t -> Exp Bool

(==*) = mkEq

(<*) :: (IsScalar t) => Exp t -> Exp t -> Exp Bool

(<*) = mkLt

infix 0 ?

(?) :: Exp Bool -> (Exp t, Exp t) -> Exp t

c ? (t, e) = Cond c t e

Haskell's not quite the perfect EDSL host

© 2011 Galois, Inc. All rights reserved.

Programs interpreted or compiled

Resolve overloading when calling the solver

exec c (OPrimApp (PrimMul (IntegralNumType (TypeVectorBool _)))

 (OTuple (NilTup `SnocTup` x1 `SnocTup` x2))) = do

 e1 <- exec c x1

 e2 <- exec c x2

 Yices.mkBVMul c e1 e2

exec c (OPrimApp (PrimMul _)

 (OTuple (NilTup `SnocTup` x1 `SnocTup` x2))) = do

 e1 <- exec c x1

 e2 <- exec c x2

 Yices.mkMul c [e1,e2]

TODO: compile to SMT-LIB format

© 2011 Galois, Inc. All rights reserved.

That's the full stack

© 2011 Galois, Inc. All rights reserved.

Much simpler API to the solver now

EDSL makes the interface dramatically simpler.

 - 160 functions exposed as 1 Exp type and 1 “solve” method.

 - Everything else reuses existing language types and
instances (functions)!

 - Huge reduction in cognitive load

 - Well-typed solver programs are well-typed in Haskell too

 - Need -XTypeNats for bitvectors though

 - Bounded polymorphism in the EDSL methods reduced the
interface size a lot

 - Still can't get there with Eq/Ord/Bool though :(

© 2011 Galois, Inc. All rights reserved.

So I can specify and solve now

> let prop = \p q r -> (p --> q) &&* (q --> r) --> (p --> r)

> :t prop

prop :: Exp Bool -> Exp Bool -> Exp Bool -> Exp Bool

\x2 x1 x0 -> (||*) (not ((&&*) ((||*) (not x2, x1),

 (||*) (not x1, x0))),

 (||*) (not x2, x0))

> solve prop

x0 => False

x1 => True

x2 => False

Satisfiable

© 2011 Galois, Inc. All rights reserved.

Or do things with bit vectors

> solve $ \b1 b2 → b1 + 1 ==* b2

 &&* b2 /=* b2 `xor` 7 + ((1 + b1) :: Exp BitVector)

\x1 x0 -> (&&*) ((==*) ((+) (x1, 0b1), x0),

 (/=*) (x0, (+) (xor (x0, 0b111), (+) (0b1, x1))))

 x0 => 0b101

 x1 => 0b100

 Satisfiable

© 2011 Galois, Inc. All rights reserved.

Or do puzzles

latin :: Array (Int,Int) (Exp Int) → Exp Bool

latin env =

 and [v >=* 1 &&* v <=* n | v ← vars env]

 &&*

 and [env ! a /=* env ! (i0,j)

 | a@(i0,j0) <- cells

 , j <- [j0+1 .. n-1]]

 &&*

 and [env ! a /=* env ! (i,j0)

 | a@(i0,j0) <- cells

 , i <- [i0+1 .. n-1]]

© 2011 Galois, Inc. All rights reserved.

Still to do...

Generating SMT-LIB output and talking over pipes to other
solvers

Recovering sharing! (Essential for industrial-scale solvers)

Support deriving solver embedding for in-language data types

Integrate Diatchki's type level naturals support to give types
to bitvector operations with sizes

A design for a scripting monad for interacting with the solver

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

