
Regular expressions as types:
Bit-coded regular expression parsing

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

WG 2.8 Meeting, Marble Falls, 2011-03-07

Joint work with Lasse Nielsen, DIKU

Regular expression

Definition (Regular expression)

A regular expression (RE) over finite alphabet A is an expression of
the form

E ,F ::= 0 | 1 | a | E |F | EF | E∗

where a ∈ A

Used in bioinformatics, compilers (lexical analysis, control flow
analysis), logic, natural language processing, program verification,
protocol specification, query processing, security, XML access
paths and document types, operating systems, scripting of
searching, matching and substitution in texts or semi-structured
data (Perl) . . .

2

Language interpretation of regular expressions

Definition (Language interpretation)

The language interpretation of a regular expression E is the set of
strings L[[E]] defined by

L[[0]] = ∅
L[[1]] = {ε}
L[[a]] = {a}

L[[E |F]] = L[[E]] ∪ L[[F]]
L[[EF]] = L[[E]]� L[[F]]
L[[E∗]] =

⋃
i≥0(L[[E]])i

where S � T = {s t | s ∈ S ∧ t ∈ T}, E 0 = {ε},E i+1 = E E i .

3

Kleene’s Theorem

Theorem (Kleene 1956)

A language is regular if and only it is denoted by a regular
expression under its language interpretation.

4

What is regular expression “matching”?

Given regular expression and input string, return . . . what?

1 yes or no (membership testing)

2 zero or one substring matches for each regular subexpression
(PCRE)

3 any finite number of substring matches for each regular
subexpression (regular expression types)

4 a parse tree

5

What is regular expression “matching”?

1 Membership testing = language interpretation.

2 PCRE: Only one match under a Kleene star (typically the last)

3 RET: Matches under two Kleene stars not grouped

4 Parsing: Each Kleene star yields a list of matches (thus parse
tree).

Note:

Increasing structure: Lower level matching output
constructible from higher level matching output, in particular
from parsing.

Classical automata theory (e.g. minimal DFA construction)
only sound for membership testing.

6

Practice

PCRE-style programming1:

Group matching: Does the RE match and where do (some of)
its sub-REs match in the string?

Substitution: Replace matched substrings by specified other
strings

Extensions: Backreferences, look-ahead, look-behind,...

Lazy vs. greedy matching, possessive quantifiers, atomic
grouping

Optimization

Observe: Language interpretation (yes/no) inappropriate, need
more refined interpretation

1in Perl and such
7

Example

((ab)(c|d)|(abc))*.

Match against abdabc .
For each parenthesized group a substring is returned.a

PCRE POSIX

$1 = abc abc
$2 = ab ε
$3 = c ε
$4 = ε abc

aOr special null-value

8

Intermezzo: Optimization??
Optimizing regular expressions = rewriting them to equivalent
form that is more efficient for matching.2

Cox (2007)

Perl-compliant regular expressions (what you get in Perl,
Python, Ruby, Java) use backtracking parsing.
Does not handle “problematic” regular expressions: E ∗ where
E contains ε – may crash at run-time (stack overflow).

2Friedl, Mastering Regular Expressions, chapter 6: Crafting an efficient
expression9

Why discrepancy between theory and practice?

Theory is extensional: About regular languages.

Does this string match the regular expression? Yes or no?

Practice is intensional: About regular expressions as
grammars.

Does this string match the regular expression and if so
how—which parts of the string match which parts of the RE?

Ideally: Regular expression matching = parsing +
“catamorphic” processing of syntax tree

Reality:

Naive backtracking matching, or
finite automaton + opportunistic instrumentation to get some
parsing information (TCL (?), Laurikari 2000, Cox 2010).

10

Regular expression parsing

Regular expression parsing: Construct parse tree for given
string.

Representation of parse tree: Regular expression as type

Example

Parse abdabc according to ((ab)(c|d)|(abc))*.

p1 = [inl ((a, b), inr d), inr (a, (b, c))]

p2 = [inl ((a, b), inr d), inl ((a, b), inl c)]

p1, p2 have type ((a× b)× (c + d) + a× (b × c)) list .

Compare with regular expression ((ab)(c|d)|(abc))* .

The elements of type E correspond to the syntax trees for
strings parsed according to regular expression E !

11

Type interpretation

Definition (Type interpretation)

The type interpretation T [[.]] compositionally maps a regular
expression E to the corresponding simple type:

T [[0]] = ∅ empty type
T [[1]] = {()} unit type
T [[a]] = {a} singleton type

T [[E | F]] = T [[E]] + T [[F]] sum type
L[[E F]] = T [[E]]× T [[F]] product type
T [[E ∗]] = {[v1, . . . , vn] | vi ∈ T [[E]]} list type

12

Flattening

Definition

The flattening function flat(.) : Val(A)→ Seq(A) is defined as
follows:

flat(()) = ε flat(a) = a
flat(inl v) = flat(v) flat(inr w) = flat(w)

flat((v ,w)) = flat(v) flat(w)

flat([v1, . . . , vn]) = flat(v1) . . . flat(vn)

Example

flat([inl ((a, b), inr d), inr (a, (b, c))]) = abdabc

flat([inl ((a, b), inr d), inl ((a, b), inl c)]) = abdabc

13

Regular expressions as types

Informally:

string s with syntax tree p according to regular expression E
∼=

string flat(v) of value v element of simple type E

Theorem

L[[E]] = {flat(v) | v ∈ T [[E]]}

14

Membership testing versus parsing

Example

E = ((ab)(c|d)|(abc))* Ed = (ab(c|d))*

Ed is unambiguous: If v ,w ∈ T [[Ed]] and flat(v) = flat(w)
then v = w . (Each string in Ed has exactly one syntax tree.)

E is ambiguous. (Recall p1 and p2.)

E and Ed are equivalent: L[[E]] = L[[Ed]]

Ed “represents” the minimal deterministic finite automaton
for E .

Matching (membership testing): Easy—use Ed .

But: How to parse according to E using Ed?

15

Bit coding

General idea:

Have nondeterministic machine/algorithm M with no input,
generating all elements of a set

Use sequence of choices as representation of output (modulo
M)

For regular languages:

Record binary choices for expanding a regular expression E
into a particular string s.

The sequence of choices (as bits) to drive machine to
particular output s as the bit coding of s under E .

16

Bit coding: Example

Example

Recall syntax trees p1, p2 for abdabc under
E = ((a× b)× (c + d) + a× (b × c))∗.

p1 = [inl ((a, b), inr d), inr (a, (b, c))]

p2 = [inl ((a, b), inr d), inl ((a, b), inl c)]

We can code them by storing only their inl , inr occurrences:

code(p1) = 011

code(p2) = 0100

17

Bit decoding

There is a linear-time polytypic function decode that can
reconstitute the syntax trees.

Theorem

decodeE (codeE (v)) = v for all v ∈ T [[E]].

Example

decodeE (011) = [inl ((a, b), inr d), inr (a, (b, c))]

decodeE (0100) = [inl ((a, b), inr d), inl ((a, b), inl c)]

18

Why bit coding?

Bit coding of string s under E

represents a syntax tree of s

takes at most as much space as |s| and often a lot less
(depending on E)

can be combined with statistical compression for text
compression

19

Bit coded regular expression parsing

Problem:

Input: string s and regular expression E .
Output: (some) parse tree p such that flat(p) = s.

Goal: Output bit coding codeE (p) instead.

Dual advantage:

Less space used for output.
Output faster to compute.

How to do that? Mark the “turns” in Thompson NFA (they
yield the bit coding)

20

DFASIM algorithm: Outline

1 RE to NFA: Build Thompson-style NFA with suitable output
bits

2 NFA to DFA: Perform extended DFA construction (only for
states required by input string), with (multiple) bit sequence
annotations on edges

3 Traverse accepting path from right to left to construct bit
coding by concatenating bit sequences.

21

Thompson-style NFA generation with output bits

E NFA Extended NFA

0
0

1

0

1

1
0 0

a
0 1

a
0 1

a/

E F
0 1

E
2

F
0 1

E
2

F

E | F

0

2

1

4
F

3
E

5 0

2/1

1

/0

4
F

3
E

5
/

/

E ∗
0

3

1

2

E
0

3

/1

1
/0

2

E

/

22

Benchmark examples

1: \w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*

([,;]\s*\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)*

2: $?(\d{1,3},?(\d{3},?)*\d{3}(\.\d{0,2})?|\d{1,3}(\.\d{0,2})?|\.\d{1,2}?)

4: [A-Za-z0-9](([\.\-]?[a-zA-Z0-9]+)*)@([A-Za-z0-9]+)

(([\.\-]?[a-zA-Z0-9]+)*)\.([A-Za-z][A-Za-z]+)

5: (\w|-)+@((\w|-)+\.)+(\w|-)+

6: [+-]?([0-9]*\.?[0-9]+|[0-9]+\.?[0-9]*)([eE][+-]?[0-9]+)?

7: ((\w|\d|\-|\.)+)@{1}(((\w|\d|\-){1,67})|((\w|\d|\-)+\.(\w|\d|\-){1,67}))

\.((([a-z]|[A-Z]|\d){2,4})(\.([a-z]|[A-Z]|\d){2})?)

8: (([A-Za-z0-9]+ +)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+)|([A-Za-z0-9]+\++))*

[A-Za-z0-9]+@((\w+\-+)|(\w+\.))*\w{1,63}\.[a-zA-Z]{2,6}

9: (([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5}){1,25})+

([;.](([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5}){1,25})+)*

10: ((\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)\s*[,]{0,1}\s*)+

From Veanes, de Halleaux, Tillman (2010)

23

Benchmark experiments (without #3)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #1

FrCa (s)
DFA (s)

Precompiled DFA (ms)
DFASIM (ms)

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #2

Backtracking (ms)
FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #4

FrCa (ms)
DFA (s)

Precompiled DFA (ms)
DFASIM (ms)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #5

FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #6

Backtracking (s)
FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #7

FrCa (ms)
DFASIM (ms)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #8

FrCa (ms)
DFASIM (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #9

FrCa (ms)
DFASIM (ms)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #10

FrCa (ms)
DFASIM (ms)

24

Regular expression algorithms compared

FrCa: Based on Frisch, Cardelli (2004), right-to-left first
phase, left-to-right second phase.

DFASIM: As above.

DFA: As DFASIM, but staged. Extended DFA for complete
extended Thomson-NFA generated, before application to
input.

Precompiled DFA: As DFA, but extended DFA specialized (in
C++) and compiled.

Backtracking: PCRE-style backtracking parser.

All algorithms:

generate bit codes;

coded in C++

25

Benchmark experiment #1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #1

FrCa (s)
DFA (s)

Precompiled DFA (ms)
DFASIM (ms)

26

Benchmark experiment #2

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #2

Backtracking (ms)
FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

27

Benchmark experiment #4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #4

FrCa (ms)
DFA (s)

Precompiled DFA (ms)
DFASIM (ms)

28

Benchmark experiment #5

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #5

FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

29

Benchmark experiment #6

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #6

Backtracking (s)
FrCa (ms)
DFA (ms)

Precompiled DFA (ms)
DFASIM (ms)

30

Benchmark experiment #7

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #7

FrCa (ms)
DFASIM (ms)

31

Benchmark experiment #8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #8

FrCa (ms)
DFASIM (ms)

32

Benchmark experiment #9

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 2000 4000 6000 8000 10000

ti
m

e

n

Example #9

FrCa (ms)
DFASIM (ms)

33

References

Henglein, Nielsen, “Regular Expression Containment:
Coinductive Axiomatization and Computational
Interpretation”, POPL 2011

Nielsen, Henglein, “Bit-coded Regular Expression Parsing”,
LATA 2011

34

Related work
Frisch, Cardelli (2004): Regular types corresponding to regular
expressions, linear-time parsing for REs;
Hosoya et al. (2000-): Regular expression types, proper
extension of regular types (!), axiomatization of tree
containment
Aanderaa (1965), Salomaa (1966), Krob (1990), Pratt
(1990), Kozen (1994, 2008), Grabmeyer (2005), Rutten et al.
(2008): RE axiomatizations (extensional)
Rutten et al. (1998-): Coalgebraic approach to systems,
including finite automata, extensional
Brandt/Henglein (1998): Coinduction rule and computational
interpretation for recursive types
Cameron (1988), Jansson, Jeuring (1999): Bit coding for
CFGs and algebraic types
Cox (2010): RE2 regular expression library, TCL RE library
(appear to be state of the Perl/POSIX-style “regex” libraries)

35

Questions?

36

Future work

Construction of minimal extended NFAs: All

Regular expression parsing with projection (throwing subtrees
away)

Regular expression parsing with catamorphic postprocessing
(substituting subtrees)

Regular expression library as practical alternatives to PCRE,
RE2 and Tcl, etc., with improved expressiveness, semantics
and performance.

37

