
Memo Tables

Jean-Christophe Filliâtre
CNRS

joint work with Francois Bobot and Andrei Paskevich
ProVal team, Orsay, France

IFIP WG 2.8 Functional Programming
March 2011



Context: Deductive Program Verification

annotated
program WP

proof
tasks

transf. provers

I C / Java
programs

I ML programs

I pre/post-
conditions

I invariants

I polymorphic
first-order logic

I algebraic data
types

I inductive
predicates

I untyped,
many-sorted,
etc.

I few or no
algebraic data
types

I some built-in
theories
(arithmetic,
arrays, etc.)



Context: Deductive Program Verification

annotated
program WP

proof
tasks

transf. provers

I C / Java
programs

I ML programs

I pre/post-
conditions

I invariants

I polymorphic
first-order logic

I algebraic data
types

I inductive
predicates

I untyped,
many-sorted,
etc.

I few or no
algebraic data
types

I some built-in
theories
(arithmetic,
arrays, etc.)



Context: Deductive Program Verification

annotated
program WP

proof
tasks

transf. provers

I C / Java
programs

I ML programs

I pre/post-
conditions

I invariants

I polymorphic
first-order logic

I algebraic data
types

I inductive
predicates

I untyped,
many-sorted,
etc.

I few or no
algebraic data
types

I some built-in
theories
(arithmetic,
arrays, etc.)



Context: Deductive Program Verification

annotated
program WP

proof
tasks

transf. provers

I C / Java
programs

I ML programs

I pre/post-
conditions

I invariants

I polymorphic
first-order logic

I algebraic data
types

I inductive
predicates

I untyped,
many-sorted,
etc.

I few or no
algebraic data
types

I some built-in
theories
(arithmetic,
arrays, etc.)



Context: Deductive Program Verification

Why3: new implementation started one year ago

key notion: transformation

proof
task

prover

I T1 = inlining of simple definitions

I T2 = elimination of algebraic types

I T3 = encoding of polymorphism



Context: Deductive Program Verification

Why3: new implementation started one year ago

key notion: transformation

proof
task

prover

I T1 = inlining of simple definitions

I T2 = elimination of algebraic types

I T3 = encoding of polymorphism



Context: Deductive Program Verification

Why3: new implementation started one year ago

key notion: transformation

proof
task

prover
T1

example

I T1 = inlining of simple definitions

I T2 = elimination of algebraic types

I T3 = encoding of polymorphism



Context: Deductive Program Verification

Why3: new implementation started one year ago

key notion: transformation

proof
task

prover
T1 T2

example

I T1 = inlining of simple definitions

I T2 = elimination of algebraic types

I T3 = encoding of polymorphism



Context: Deductive Program Verification

Why3: new implementation started one year ago

key notion: transformation

proof
task

prover
T1 T2 T3

example

I T1 = inlining of simple definitions

I T2 = elimination of algebraic types

I T3 = encoding of polymorphism



Efficiency Concerns

to save space, we do

I hash-consing of terms, formulas and task prefixes

to save time, we do

I memoization of transformation functions



Memo Tables

there are millions of task elements, thousands of transformations

some are long-lived, others short-lived

we need efficient memo tables to avoid memory leaks



The Problem



Terminology

I a value can point to another value

V1 V2

I a value is reachable from another value

V1 V2
... Vn

I a set of values called roots
any value not reachable from a root can be reclaimed



The Problem

some values are called keys, some values are called tables

to a key K and a table T we can assign an arbitrary value V ,
written T : K 7→ V

given an existing binding T : K 7→ V , we can remove it, undoing
the corresponding assignment



The Problem: Requirements

given a binding T : K 7→ V

as long as K and T are both reachable, then V is
reachable too (and can be obtained from K and T)



The Problem: Requirements

if K is reachable, then it is still reachable when all
bindings T : K 7→ V are removed

if T is reachable, then it is still reachable when all
bindings T : K 7→ V are removed

if V is reachable, then it is still reachable when all
bindings T : K 7→ V with K or T unreachable are
removed



Some (Partial) Solutions



Naive Solution

T is a traditional dictionary data structure
(hash table, balanced tree, etc.)

K1

K2

T
7→
7→
. . .

V1

V2

obvious drawback
T reachable ⇒ all keys and values bound in T are also reachable

conclusion
T should not hold pointers to keys



Naive Solution

T is a traditional dictionary data structure
(hash table, balanced tree, etc.)

K1

K2

T
7→
7→
. . .

V1

V2

obvious drawback
T reachable ⇒ all keys and values bound in T are also reachable

conclusion
T should not hold pointers to keys



New Tool: Weak Pointers

a value can weakly point to another value, depicted

V1 V2

a value not yet reclaimed can be accessed via a weak pointer



New Tool: Finalizers

one or several finalizers can be attached to a value

some code

V

a finalizer is a closure which is executed whenever the
corresponding value is going to be reclaimed



A Better Solution?

K is not used directly as index in T
but a unique tag i is used instead

remove i

K
T
7→
. . .

Vi



A Better Solution?

K is not used directly as index in T

remove K

K
T
7→
. . .

V



A Better Solution?

it seems to be a good solution...
but a key can be reachable from a value (e.g. V = K )

remove K

K
T
7→
. . .

V

preventing K from being reclaimed

conclusion
T should not hold pointers to values either



A Better Solution?

it seems to be a good solution...
but a key can be reachable from a value (e.g. V = K )

remove K

K
T
7→
. . .

V

preventing K from being reclaimed

conclusion
T should not hold pointers to values either



A Better Solution!

we cannot stock bindings inside tables

⇒ let us keep them in keys instead

remove a

Ta

K

a 7→
. . .

V



A Better Solution!

improvement: only one finalizer instead of one per key

clean Ta

Ta K

a 7→
. . .

V



A Better Solution!

K reachable from V is not a problem anymore

clean Ta

Ta K

a 7→
. . .

V

(note: you can implement a similar solution in Haskell using
System.Mem.Weak)



A Better Solution!

K reachable from V is not a problem anymore

clean Ta

Ta K

a 7→
. . .

V

(note: you can implement a similar solution in Haskell using
System.Mem.Weak)



Symmetry

of course, the roles of K and T being symmetric,
if T is reachable from V the “cycle issue” is still there

example: we want to memoize the K combinator K(X ,Y ) = X
we first memoize the partial application to X , the result being
another memoization table

Ta X

a 7→
. . .

Tb Y

b 7→
. . .



Symmetry

the approach is viable if we can guarantee that the first argument
always lives longer than the second one

fortunately, this is indeed the case in our framework



Implementation

implemented as an Ocaml library

type tag

type α tagged = private {
node : α;
tag : tag;

}

val create : α → α tagged

val memoize : (α tagged → α) → (α tagged → α)



Implementation

implemented as an Ocaml library

type tag

val create : unit → tag

module Memo
(Key : sig type t

val tag : t → tag end) :
sig

val memoize : (Key.t → α) → (Key.t → α)
end



Benchmarks
1,448 proof tasks translated to SMT-lib format and printed in files



Discussion

we can rephrase the problem in terms of a single, immortal table
with several keys

T
...

K · · · V · · ·
...

where V is removed as soon as K or T is reclaimed

can we propose a new notion of weak pointer for that purpose?


