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What is a FileStore?!!?

A FileStore is a collection of directories, 
files, and symbolic links that constitutes a 
coherent collection of data.
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Example FileStores

Monitoring Systems:
Various AT&T monitoring applications
CoralCDN

Scientific data sets:
Astronomy: Huge Data but Small Programs, ...
Ecology: CORIE system for Columbia river estuary, ...
Physics:  The physics of soft matter, ...

Code bases:
Pads, Haskell, Linux, Websites, ...

Ad hoc databases:
Princeton computer science department records
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Why not a database?
Up-front cost: choosing a database, possibly 
paying for it, learning how to use it.
Challenges loading data: potentially long-load 
times, high indexing overheads, and tedious data 
transformations.
Losing control: all access must be through 
database interface.
Programming overhead: tedium of interfacing the 
database to conventional programming language

Database
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Challenges with FileStores

Documentation typically lacking:                  
difficult maintenance, hard to learn. 
No systematic way to detect errors in FileStore.
Tools must be built from scratch.
Tools can’t document assumptions about 
FileStore, so format evolution can cause silent 
failures.
Scale (numbers of files, size of files) complicates 
things further.
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A Solution: Forest
Type-based specification language for FileStores.
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[| forest |
 type Website_d(config::FilePath)  = Directory {
  c       is    config     :: Config,             
  static  is <| gdst c |> :: Static_d,          
  dynamic is <| gcgi c |> :: Cgi_d, 
  scripts is <| gspt c |> :: Scripts_d, 
  adm     is <| gdst c |> :: Info_d,  
  data    is <| (gln c)++"/examples/data" |>
          :: DataSource_d <|(gSrc admin_info)|>, 
  usr     is <| groot c |>  
          :: Usr_d <|(gpath data_md, adm)|>  }  
|]
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Benefits of Forest

Executable documentation
Generated data structures for in-memory 
representation of data and meta-data 
Generated (lazy) loading function
Class instances to enable              
generic programming
Access to existing                           
generic tools

[| forest |
 type Website_d(config::FilePath)  = Directory {
  c       is    config     :: Config,             
  static  is <| gdst c |> :: Static_d,          
  dynamic is <| gcgi c |> :: Cgi_d, 
  scripts is <| gspt c |> :: Scripts_d, 
  adm     is <| gdst c |> :: Info_d,  
  data    is <| (gln c)++"/examples/data" |>
          :: DataSource_d <|(gSrc admin_info)|>, 
  usr     is <| groot c |>  
          :: Usr_d <|(gpath data_md, adm)|>  }  
|]
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website [17] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.

• Language Design: We present the design of Forest and illus-
trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.

• Tool Generation: We describe how third-party developers can
use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.

• Case Study in Domain-Specific Language Design: Forest is
fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [6, 7]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [15]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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Princeton CS Department
[forest|
   type PrincetonCS (y::Integer) = Directory
    { notes     is "README" :: Text
    , seniors   is <|mkClass y      |> :: Class y
    , juniors   is <|mkClass (y + 1)|> :: Class <| y + 1 |>
    , graduates :: Grads
    }

  type Class (y :: Integer) = Directory
    { bse is <|"BSE" ++ (toStrN y 2)|> :: Major
    , ab  is <|"AB"  ++ (toStrN y 2)|> :: Major   
    , transfer  matches transferRE  :: Maybe Major 
    , withdrawn matches withdrawnRE :: Maybe Major 
    , leave     matches leaveRE     :: Maybe Major 
    }

  type Grads = 
     Map [ c :: Class <| getYear c |> | c <- matches cRE ] 

  type Major = Map 
    [ s :: File (Student <| dropExtension s |>) 
    | s <- matches “GL *.txt”,  <| (not . template) s |>  ]  
|]

website [17] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.

• Language Design: We present the design of Forest and illus-
trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.

• Tool Generation: We describe how third-party developers can
use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.

• Case Study in Domain-Specific Language Design: Forest is
fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [6, 7]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [15]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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Princeton CS Department
[forest|
   type PrincetonCS (y::Integer) = Directory
    { notes     is "README" :: Text
    , seniors   is <|mkClass y      |> :: Class y
    , juniors   is <|mkClass (y + 1)|> :: Class <| y + 1 |>
    , graduates :: Grads
    }

  type Class (y :: Integer) = Directory
    { bse is <|"BSE" ++ (toStrN y 2)|> :: Major
    , ab  is <|"AB"  ++ (toStrN y 2)|> :: Major   
    , transfer  matches transferRE  :: Maybe Major 
    , withdrawn matches withdrawnRE :: Maybe Major 
    , leave     matches leaveRE     :: Maybe Major 
    }

  type Grads = 
     Map [ c :: Class <| getYear c |> | c <- matches cRE ] 

  type Major = Map 
    [ s :: File (Student <| dropExtension s |>) 
    | s <- matches “GL *.txt”,  <| (not . template) s |>  ]  
|]

website [17] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.

• Language Design: We present the design of Forest and illus-
trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.

• Tool Generation: We describe how third-party developers can
use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.

• Case Study in Domain-Specific Language Design: Forest is
fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [6, 7]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [15]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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Princeton CS Department
[forest|
   type PrincetonCS (y::Integer) = Directory
    { notes     is "README" :: Text
    , seniors   is <|mkClass y      |> :: Class y
    , juniors   is <|mkClass (y + 1)|> :: Class <| y + 1 |>
    , graduates :: Grads
    }

  type Class (y :: Integer) = Directory
    { bse is <|"BSE" ++ (toStrN y 2)|> :: Major
    , ab  is <|"AB"  ++ (toStrN y 2)|> :: Major   
    , transfer  matches transferRE  :: Maybe Major 
    , withdrawn matches withdrawnRE :: Maybe Major 
    , leave     matches leaveRE     :: Maybe Major 
    }

  type Grads = 
     Map [ c :: Class <| getYear c |> | c <- matches cRE ] 

  type Major = Map 
    [ s :: File (Student <| dropExtension s |>) 
    | s <- matches “GL *.txt”,  <| (not . template) s |>  ]  
|]

website [17] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.

• Language Design: We present the design of Forest and illus-
trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.

• Tool Generation: We describe how third-party developers can
use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.

• Case Study in Domain-Specific Language Design: Forest is
fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [6, 7]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [15]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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Princeton CS Department
[forest|
   type PrincetonCS (y::Integer) = Directory
    { notes     is "README" :: Text
    , seniors   is <|mkClass y      |> :: Class y
    , juniors   is <|mkClass (y + 1)|> :: Class <| y + 1 |>
    , graduates :: Grads
    }

  type Class (y :: Integer) = Directory
    { bse is <|"BSE" ++ (toStrN y 2)|> :: Major
    , ab  is <|"AB"  ++ (toStrN y 2)|> :: Major   
    , transfer  matches transferRE  :: Maybe Major 
    , withdrawn matches withdrawnRE :: Maybe Major 
    , leave     matches leaveRE     :: Maybe Major 
    }

  type Grads = 
     Map [ c :: Class <| getYear c |> | c <- matches cRE ] 

  type Major = Map 
    [ s :: File (Student <| dropExtension s |>) 
    | s <- matches “GL *.txt”,  <| (not . template) s |>  ]  
|]

website [17] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.

• Language Design: We present the design of Forest and illus-
trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.

• Tool Generation: We describe how third-party developers can
use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.

• Case Study in Domain-Specific Language Design: Forest is
fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [6, 7]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [15]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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Princeton CS Department
[forest|
   type PrincetonCS (y::Integer) = Directory
    { notes     is "README" :: Text
    , seniors   is <|mkClass y      |> :: Class y
    , juniors   is <|mkClass (y + 1)|> :: Class <| y + 1 |>
    , graduates :: Grads
    }

  type Class (y :: Integer) = Directory
    { bse is <|"BSE" ++ (toStrN y 2)|> :: Major
    , ab  is <|"AB"  ++ (toStrN y 2)|> :: Major   
    , transfer  matches transferRE  :: Maybe Major 
    , withdrawn matches withdrawnRE :: Maybe Major 
    , leave     matches leaveRE     :: Maybe Major 
    }

  type Grads = 
     Map [ c :: Class <| getYear c |> | c <- matches cRE ] 

  type Major = Map 
    [ s :: File (Student <| dropExtension s |>) 
    | s <- matches GL "*.txt",  <| (not . template) s |>  ]  
|]

website [17] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.

• Language Design: We present the design of Forest and illus-
trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.

• Tool Generation: We describe how third-party developers can
use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.

• Case Study in Domain-Specific Language Design: Forest is
fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [6, 7]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [15]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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Princeton CS Department
[forest|
   type PrincetonCS (y::Integer) = Directory
    { notes     is "README" :: Text
    , seniors   is <|mkClass y      |> :: Class y
    , juniors   is <|mkClass (y + 1)|> :: Class <| y + 1 |>
    , graduates :: Grads
    }

  type Class (y :: Integer) = Directory
    { bse is <|"BSE" ++ (toStrN y 2)|> :: Major
    , ab  is <|"AB"  ++ (toStrN y 2)|> :: Major   
    , transfer  matches transferRE  :: Maybe Major 
    , withdrawn matches withdrawnRE :: Maybe Major 
    , leave     matches leaveRE     :: Maybe Major 
    }

  type Grads = 
     Map [ c :: Class <| getYear c |> | c <- matches cRE ] 

  type Major = Map 
    [ s :: File (Student <| dropExtension s |>) 
    | s <- matches GL "*.txt ",  <| (not . template) s |>  ]  
|]

Red indicates 
Haskell expression
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Princeton CS Department
[forest|
   type PrincetonCS (y::Integer) = Directory
    { notes     is "README" :: Text
    , seniors   is <|mkClass y      |> :: Class y
    , juniors   is <|mkClass (y + 1)|> :: Class <| y + 1 |>
    , graduates :: Grads
    }

  type Class (y :: Integer) = Directory
    { bse is <|"BSE" ++ (toStrN y 2)|> :: Major
    , ab  is <|"AB"  ++ (toStrN y 2)|> :: Major   
    , transfer  matches transferRE  :: Maybe Major 
    , withdrawn matches withdrawnRE :: Maybe Major 
    , leave     matches leaveRE     :: Maybe Major 
    }

  type Grads = 
     Map [ c :: Class <| getYear c |> | c <- matches cRE ] 

  type Major = Map 
    [ s :: File (Student <| dropExtension s |>) 
    | s <- matches “GL *.txt”,  <| (not . template) s |>  ]  
|]

Blue indicates 
Pads description
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Universal Description

[forest| 
  type Universal_d = Directory 
   { ascii_files  is [ f :: Text         
                    | f <- matches (GL "*"), 
                   <| get_kind  f_att == AsciiK      |> ]
   , binary_files is [ b :: Binary       
                    | b <- matches (GL "*"), 
                   <| get_kind  b_att == Binary      |> ]
   , directories is [ d :: Universal_d  
                    | d <- matches (GL "*"), 
                   <| get_kind  d_att == DirectoryK  |> ]
   , symLinks    is [ s :: SymLink      
                    | s <- matches (GL "*"), 
                   <| get_isSym s_att == True        |> ]
   } 
|]
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Coral CDN

Hosts in Coral CDN periodically send 
usage statistics to a central server.

plab1.nyu.edu plabn.nyu.edu...

2009_06_07

plab2.nyu.edu

Coral 
Monitor

corald.log.gz

coraldnssrv.log.gz coralwebsrv.log.gz

probed.log.gz

2009_06_08
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Coral CDN Description
[forest|
  type Top  = [ s :: Site | s <- matches siteRE ]              
  type Site = [ d :: Log  | d <- matches timeRE ]

  type Log = Directory 
    { web is "coralwebsrv.log.gz" :: Gzip  (File Coral),
      dns is "coraldnssrv.log.gz" :: Maybe (Gzip (File Ptext)),    
      prb is "probed.log.gz"      :: Maybe (Gzip (File Ptext))
      dmn is "corald.log.gz"      :: Maybe (Gzip (File Ptext)) }
|]

[pads|
  type Coral = [Line Entry]
  data Entry = 
    { header  :: Header,   comma_ws
    , payload :: InOut }             |]

comma_ws = REd ",[ \t]*" ", "
timeRE   = RE  "[0–9]{4}_[0–9]{2}_[0–9]{2}-[0–9]{2}_[0–9]{2}"
siteRE   = RE  "[ˆ.].*"

plab1.nyu.edu plabn.nyu.edu...

2009_06_07

plab2.nyu.edu

Coral 
Monitor

corald.log.gz

coraldnssrv.log.gz coralwebsrv.log.gz

probed.log.gz

2009_06_08
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Forest Rep Types

newtype Top   = Top   [(Path, Site)] 
newtype Site  = Site  [(Path, Log) ] 

data Log = Log { web :: Coral
               , dns :: Maybe Ptext,
               , prb :: Maybe Ptext,
               , dmn :: Maybe Ptext } 

[forest|
  type Top  = [ s :: Site | s <- matches siteRE ]
  type Site = [ d :: Log  | d <- matches timeRE ]

  type Log = Directory 
    { web is "coralwebsrv.log.gz" :: Gzip  (File Coral),
      dns is "coraldnssrv.log.gz" :: Maybe (Gzip (File Ptext)),    
      prb is "probed.log.gz"      :: Maybe (Gzip (File Ptext))
      dmn is "corald.log.gz"      :: Maybe (Gzip (File Ptext)) }
|]
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Forest MetaData Types

[forest|
  type Log = Directory 
    { web is "coralwebsrv.log.gz" :: Gzip  (File Coral),
      dns is "coraldnssrv.log.gz" :: Maybe (Gzip (File Ptext)),    
      prb is "probed.log.gz"      :: Maybe (Gzip (File Ptext))
      dmn is "corald.log.gz"      :: Maybe (Gzip (File Ptext)) }

  type Site = [ d :: Log  | d <- matches time ]
  type Top  = [ s :: Site | s <- matches site ] |]

type Log_md = (Forest_md, Log_inner_md)
data Log_inner_md = Log_inner_md 
  { web_md :: (Forest_md, Coral_md)
  , dns_md :: (Forest_md, Maybe (Forest_md, Ptext_md))
  , prb_md :: (Forest_md, Maybe (Forest_md, Ptext_md))
  , dmn_md :: (Forest_md, Maybe (Forest_md, Ptext_md))    
  }

[forest|
  type Top  = [ s :: Site | s <- matches siteRE ]
  type Site = [ d :: Log  | d <- matches timeRE ]

  type Log = Directory 
    { web is "coralwebsrv.log.gz" :: Gzip  (File Coral),
      dns is "coraldnssrv.log.gz" :: Maybe (Gzip (File Ptext)),    
      prb is "probed.log.gz"      :: Maybe (Gzip (File Ptext))
      dmn is "corald.log.gz"      :: Maybe (Gzip (File Ptext)) }
|]
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Base Forest MetaData
data Forest_md = Forest_md 
   { numErrors :: Int
   , errorMsg  :: Maybe ErrMsg
   , fileInfo   :: FileInfo      
   }
 
data FileInfo = FileInfo 
   { fullpath    :: FilePath
   , owner       :: String
   , group       :: String
   , size        :: COff
   , access_time :: EpochTime
   , mod_time    :: EpochTime
   , read_time   :: EpochTime
   , mode        :: FileMode
   , isSymLink   :: Bool
   , kind        :: FileType     
   }

Thursday, March 10, 2011



Forest Type Class
Compiler generates instance declarations:

Data for each rep and md type
ForestMD for each md type
Forest for each pair of rep, md types

class (Data rep, ForestMD md) => 
       Forest rep md | rep -> md  where
  load :: FilePath -> IO(rep, md)
  fdef :: rep

class Data md => ForestMD md where
  get_fmd_header :: md -> Forest_md
  replace_fmd_header :: md -> Forest_md -> md
  get_fileInfo :: md -> FileInfo
  get_fullpath :: md -> String
  ...
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Programming with Forest

Forest/Pads combination blurs distinction 
between on-disk and in-memory data.
Example program computes time when 
CDN statistics last reported for each site:
sites_mod () = do
  (rep,md) <- coral_load "/var/log/coral1"
  return (case (rep,md) of (Coral rs, (_,ms)) -> 
           map (get_site *** get_mod) (zip rs ms))

get_site = fst 
get_mod (_,(f,_)) = mod_time . fileInfo $ f 
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Generic Programming
Third-party developers can use generic programming 
to build tools that work over any Forest description.

Pretty printer
File system visualization
Generic querying
Permission checker
Description-specific                                       
versions of shell tools
Description “inferencer”

website [17] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.

• Language Design: We present the design of Forest and illus-
trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.

• Tool Generation: We describe how third-party developers can
use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.

• Case Study in Domain-Specific Language Design: Forest is
fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-

Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [6, 7]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [15]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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Example: Generic Querying
Function findFiles returns all file names in 
metadata md that satisfy predicate pred:

Example uses:

findFiles :: (ForestMD md) => 
            md -> (FileInfo -> Bool) -> [FilePath]
findFiles md pred = map fullpath (listify pred md)

dirs  = findFiles cs_md 
       (\(r::FileInfo) -> (kind r) == DirectoryK)
other = findFiles cs_md 
       (\(r::FileInfo) -> (owner r) /= "bwk")
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Semantics

Strings n ∈ Σ∗

Paths r, s ::= • | r /n
Attributes a ::= . . .

Filesystem T ::= File(n)
Contents | Dir({n1, . . . , nk})

| Link(r)
Filesystems F ::= {| r1 �→ (a1, T1), . . . rk �→ (ak, Tk) |}

Values v ::= a | n | r | True | False | () | (v1, v2)
| Just(v) | Nothing | {v1, . . . , vk}

Expressions e ::= x | v | . . .
Environments E ::= • | E, x �→ v

Specifications s ::= kτm
τr | Adhoc(bτmτr ) | e :: s | �x:s1, s2�

| {s | x ∈ e} | Pred(e) | s?

Figure 6. File systems and their specifications

pairs of file attributes a and file system contents T . We leave the at-

tribute records abstract; they should include the usual fields: owner,

group, date modified, etc. We write adefault for a default attribute

record where necessary. The contents T of a node in the file sys-

tem may be a file File(n) (with underlying string contents n), a

directory Dir({n1, . . . , nk}) (with contents named n1, . . . , nk) or

a symbolic link Link(r) (where r is the path pointed to by the link).

A file system model F is well-formed if it is tree-shaped, with

directories forming internal nodes and files and symbolic links at

the leaves. In addition, these conditions must hold:

• The domain of F must be prefix-closed.

• If F (r) = (a,Dir({n1, . . . , nk})) then for i = 1, . . . , k,

r /ni ∈ dom(F ).

• If F (r) = (a,File(nr)) or (a, Link(r�)) then there does not

exist n such that r /n ∈ dom(F ).

Figure 6 also presents the syntax of a simple computation lan-

guage e and our file system specifications s. The computation lan-

guage e contains values v, variables x, and other operators, which

we leave unspecified. An environment E maps variables to values.

The semantic function evalτ (E , F, r, e) evaluates an expression e
in an environment E and file system F with respect to a current

path r, yielding a value v of type τ .

The simplest file system specifications are constants k, which

range over basic specifications such as those for files (F), text files

(T), binary files (B), or any file system contents at all (A).

Pads/Haskell specifications are modeled as Adhoc(bτmτr ) where

bτmτr is a parser—i.e., a total function from pairs of environments

and strings to pairs of type τr × τm, where the first element is

the representation for the parsed data and the second element is its

metadata.

Forest’s surface syntax combines specifications for records and

paths into a single construct (and similarly for comprehensions and

paths). The calculus models (dependent) records, paths, and com-

prehensions as independent, orthogonal constructs. Record speci-

fications are written �x:s1, s2�, where x may appear in s2. Path

specifications are written e :: s, where e is a path name (to be

appended to the current path) and s specifies a fragment of the

file system at that path. Comprehension specifications are written

{s | x ∈ e}, where e is a set of values, x is a variable, and s,

which may depend on x, specifies a fragment of the file system

for each value of x. Forest’s combined record-and-path construct

{c is "c.txt" :: C, d is "d.txt" :: D c} is en-

E ;F ; r |= kτm
τr � ck(kτm

τr , F, r)

F (r) = (a,File(n)) bτmτr (E, n) = v, d

E ;F ; r |= Adhoc(bτmτr ) � v, (valid(d), (d, a))

F (r) = (a, T ) T �= File(n) bτmτr (E, �) = (v, d)

E ;F ; r |= Adhoc(bτmτr ) � v, (False, (d, a))

r �∈ dom(F ) b(E, �) = (v, d)

E ;F ; r |= Adhoc(bτmτr ) � v, (False, (d, adefault))

E ;F ; evalpath(E,F, r, r / e) |= s � v, d

E ;F ; r |= e :: s � v, d

E ;F ; r |= s1 � v1, d1
E [x �→ v1, xd �→ d1];F ; r |= s2 � v2, d2

E ;F ; r |= �x:s1, s2� � (v1, v2), (valid(d1) ∧ valid(d2), (d1, d2))

eval(τ set)(E , F, r, e) = {v1, . . . , vk}
S = {(v, d) | v� ∈ {v1, . . . , vk} and E [x �→ v�];F ; r |= s � v, d}

E ;F ; r |= {s | x ∈ e} � π1 S, (
�

valid(π2 S),π2 S)

E ;F ; r |= Pred(e) � (), (evalbool(E,F, r, e), ())

r �∈ dom(F )

E ;F ; r |= s? � Nothing, (False,Nothing)

r ∈ dom(F ) E ;F ; r |= s � v, d

E ;F ; r |= s? � Just(v), (valid(d), Just(d))

Figure 7. Forest calculus semantics

coded in the calculus as �x:("c.txt" ::C), ("d.txt" ::D x)�.
Similarly, Forest’s comprehension [x :: s | x <- e] is en-

coded as the composition of the calculus constructors {s1 | x ∈ e}
and s1 = x :: s.

Predicate specifications Pred(e) succeed when e evaluates

to True and fail when e evaluates to False under the current

environment. A Forest constraint of the form s where e is

encoded in the calculus as a dependent pair with a predicate:

�x:s,Pred(e[x/this])�
Finally, maybe specifications are written as s? in the calculus.

Calculus Semantics. The semantics of the calculus is organized

into three separate definitions, one for each of the three artifacts

generated by the Forest compiler. These definitions are spelled out

in Figures 7 and 8.

The first semantic judgement has the form E ;F ; r |= s � v, d.

This judgement captures the behavior of the load function. Intu-

itively, it states that in environment E and file system F , speci-

fication s matches the file system fragment at current path r and

produces the representation v and metadata d. This judgement may

also be viewed as a total function from E , F , r and s to the pair v
and d. The judgement is total because when file system fragments

fail to match the given specification, defaults are generated for the

representation v and errors are recorded in the metadata d. This de-

sign is preferable to failing as it allows a programmer to explore a

file system fragment even when it contains errors, as is common in

filestores.
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Semantics

Strings n ∈ Σ∗

Paths r, s ::= • | r /n
Attributes a ::= . . .

Filesystem T ::= File(n)
Contents | Dir({n1, . . . , nk})

| Link(r)
Filesystems F ::= {| r1 �→ (a1, T1), . . . rk �→ (ak, Tk) |}

Values v ::= a | n | r | True | False | () | (v1, v2)
| Just(v) | Nothing | {v1, . . . , vk}

Expressions e ::= x | v | . . .
Environments E ::= • | E, x �→ v

Specifications s ::= kτm
τr | Adhoc(bτmτr ) | e :: s | �x:s1, s2�

| {s | x ∈ e} | Pred(e) | s?

Figure 6. File systems and their specifications

pairs of file attributes a and file system contents T . We leave the at-

tribute records abstract; they should include the usual fields: owner,

group, date modified, etc. We write adefault for a default attribute

record where necessary. The contents T of a node in the file sys-

tem may be a file File(n) (with underlying string contents n), a

directory Dir({n1, . . . , nk}) (with contents named n1, . . . , nk) or

a symbolic link Link(r) (where r is the path pointed to by the link).

A file system model F is well-formed if it is tree-shaped, with

directories forming internal nodes and files and symbolic links at

the leaves. In addition, these conditions must hold:

• The domain of F must be prefix-closed.

• If F (r) = (a,Dir({n1, . . . , nk})) then for i = 1, . . . , k,

r /ni ∈ dom(F ).

• If F (r) = (a,File(nr)) or (a, Link(r�)) then there does not

exist n such that r /n ∈ dom(F ).

Figure 6 also presents the syntax of a simple computation lan-

guage e and our file system specifications s. The computation lan-

guage e contains values v, variables x, and other operators, which

we leave unspecified. An environment E maps variables to values.

The semantic function evalτ (E , F, r, e) evaluates an expression e
in an environment E and file system F with respect to a current

path r, yielding a value v of type τ .

The simplest file system specifications are constants k, which

range over basic specifications such as those for files (F), text files

(T), binary files (B), or any file system contents at all (A).

Pads/Haskell specifications are modeled as Adhoc(bτmτr ) where

bτmτr is a parser—i.e., a total function from pairs of environments

and strings to pairs of type τr × τm, where the first element is

the representation for the parsed data and the second element is its

metadata.

Forest’s surface syntax combines specifications for records and

paths into a single construct (and similarly for comprehensions and

paths). The calculus models (dependent) records, paths, and com-

prehensions as independent, orthogonal constructs. Record speci-

fications are written �x:s1, s2�, where x may appear in s2. Path

specifications are written e :: s, where e is a path name (to be

appended to the current path) and s specifies a fragment of the

file system at that path. Comprehension specifications are written

{s | x ∈ e}, where e is a set of values, x is a variable, and s,

which may depend on x, specifies a fragment of the file system

for each value of x. Forest’s combined record-and-path construct

{c is "c.txt" :: C, d is "d.txt" :: D c} is en-

E ;F ; r |= kτm
τr � ck(kτm

τr , F, r)

F (r) = (a,File(n)) bτmτr (E, n) = v, d

E ;F ; r |= Adhoc(bτmτr ) � v, (valid(d), (d, a))

F (r) = (a, T ) T �= File(n) bτmτr (E, �) = (v, d)

E ;F ; r |= Adhoc(bτmτr ) � v, (False, (d, a))

r �∈ dom(F ) b(E, �) = (v, d)

E ;F ; r |= Adhoc(bτmτr ) � v, (False, (d, adefault))

E ;F ; evalpath(E,F, r, r / e) |= s � v, d

E ;F ; r |= e :: s � v, d

E ;F ; r |= s1 � v1, d1
E [x �→ v1, xd �→ d1];F ; r |= s2 � v2, d2

E ;F ; r |= �x:s1, s2� � (v1, v2), (valid(d1) ∧ valid(d2), (d1, d2))

eval(τ set)(E , F, r, e) = {v1, . . . , vk}
S = {(v, d) | v� ∈ {v1, . . . , vk} and E [x �→ v�];F ; r |= s � v, d}

E ;F ; r |= {s | x ∈ e} � π1 S, (
�

valid(π2 S),π2 S)

E ;F ; r |= Pred(e) � (), (evalbool(E,F, r, e), ())

r �∈ dom(F )

E ;F ; r |= s? � Nothing, (False,Nothing)

r ∈ dom(F ) E ;F ; r |= s � v, d

E ;F ; r |= s? � Just(v), (valid(d), Just(d))

Figure 7. Forest calculus semantics

coded in the calculus as �x:("c.txt" ::C), ("d.txt" ::D x)�.
Similarly, Forest’s comprehension [x :: s | x <- e] is en-

coded as the composition of the calculus constructors {s1 | x ∈ e}
and s1 = x :: s.

Predicate specifications Pred(e) succeed when e evaluates

to True and fail when e evaluates to False under the current

environment. A Forest constraint of the form s where e is

encoded in the calculus as a dependent pair with a predicate:

�x:s,Pred(e[x/this])�
Finally, maybe specifications are written as s? in the calculus.

Calculus Semantics. The semantics of the calculus is organized

into three separate definitions, one for each of the three artifacts

generated by the Forest compiler. These definitions are spelled out

in Figures 7 and 8.

The first semantic judgement has the form E ;F ; r |= s � v, d.

This judgement captures the behavior of the load function. Intu-

itively, it states that in environment E and file system F , speci-

fication s matches the file system fragment at current path r and

produces the representation v and metadata d. This judgement may

also be viewed as a total function from E , F , r and s to the pair v
and d. The judgement is total because when file system fragments

fail to match the given specification, defaults are generated for the

representation v and errors are recorded in the metadata d. This de-

sign is preferable to failing as it allows a programmer to explore a

file system fragment even when it contains errors, as is common in

filestores.
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coded as the composition of the calculus constructors {s1 | x ∈ e}
and s1 = x :: s.

Predicate specifications Pred(e) succeed when e evaluates

to True and fail when e evaluates to False under the current

environment. A Forest constraint of the form s where e is

encoded in the calculus as a dependent pair with a predicate:

�x:s,Pred(e[x/this])�
Finally, maybe specifications are written as s? in the calculus.

Calculus Semantics. The semantics of the calculus is organized

into three separate definitions, one for each of the three artifacts

generated by the Forest compiler. These definitions are spelled out

in Figures 7 and 8.

The first semantic judgement has the form E ;F ; r |= s � v, d.

This judgement captures the behavior of the load function. Intu-

itively, it states that in environment E and file system F , speci-

fication s matches the file system fragment at current path r and

produces the representation v and metadata d. This judgement may

also be viewed as a total function from E , F , r and s to the pair v
and d. The judgement is total because when file system fragments

fail to match the given specification, defaults are generated for the

representation v and errors are recorded in the metadata d. This de-

sign is preferable to failing as it allows a programmer to explore a

file system fragment even when it contains errors, as is common in

filestores.
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Implementation

Requires >= GHC 7.0
Quasi-quoter and Template Haskell

Generic programming: so far, SYB.
Available for download from 
www.padsproj.org

QuasiQuoter
  quoteExp  :: String -> Q Exp
  quotePat  :: String -> Q Pat
  quoteType :: String -> Q Type
  quoteDec  :: String -> Q [Dec]
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Current Work: Printing

Read-only FileStores are already very useful, but 
the ability to print would be nice.
Pads/Haskell already supports printing.
Challenges: 

What if same file is mentioned multiple times?
How to handle large FileStores?
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