Running Dynamic Algorithms on Static Hardware

Stephen Edwards (Columbia)
Simon Peyton Jones, MSR Cambridge
Satnam Singh, MSR Cambridge

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

island fib n = case n of
 0 -> let zero = 0 in return zero
 1 -> let one = 1 in return one
 _ -> let one = 1 in
 let n1 = + n1 in
 recurse s1 n (n1)
 s1 n n1 = let two = 2 in
 let n2 = + n two in
 recurse s2 n1 (n2)
 s2 n1 n2 = let r = + n1 n2 in
 return r
XC6VLX760 758,784 logic cells, 864 DSP blocks, 1,440 dual ported 18Kb RAMs

32-bit integer Adder (32/474,240) >700MHz

14820 sim-adds
1,037,400,000,000 additions/second

1,037,400,000,000 additions/second

332x1440
The holy grail

- Software is quick to write
- Gates are fast and power-efficient to run
- FPGAs make it seem tantalisingly close
• Programs are
 – Recursive
 – Dynamic
 – Use the heap

• Hardware is
 ▪ Iterative
 ▪ Static
 ▪ No heap

This talk: towards bridging the gap
function addtree (a : int_array) return integer is
 variable len, offset : natural ;
 variable lhs, rhs : integer ;
begin
 len := a'length ;
 offset := a'left(1) ;
 if len = 1 then
 return a(offset) ;
 else
 lhs := addtree (a(offset to offset+len/2-1)) ;
 rhs := addtree (a(offset+len/2 to offset+len-1)) ;
 return lhs + rhs ;
 end if ;
end function addtree ;
entity fac_example is
 port (signal n : in natural ;
 signal r : out natural);
end entity fac_example;

architecture behavioural of fac_example is

function fac (n : in natural) return natural is
begin
 if n <= 1 then
 return 1 ;
 else
 return n * fac (n-1) ;
 end if ;
end function fac ;

begin

 r <= fac (n) ;

end architecture behavioural ;
process
 variable state : integer := 0 ;
 variable c, d, e : integer ;
begin
 wait until clk'event and clk='1';
 case state is
 when 0 => c := a + b ; state := 1 ;
 when 1 => d := 2 * c ; state := 2 ;
 when 2 => e := d - 5 ; state := 3 ;
 when others => null ;
 end case ;
end process ;

c := a + b ; -- cycle 0

 d := 2 * c ; -- cycle 1
 e := d - 5; -- cycle 2
entity fibManual is
 port (signal clk, rst : in bit;
 signal n : in natural;
 signal n_en : in bit;
 signal f : out natural;
 signal f_rdy : out bit);
end entity fibManual;

use work.fibManualPackage.all;
use work.StackPackage.all;
architecture manual of fibManual is
begin
 compute_fib : process
 variable stack : stack_type := (others => 0);
 variable stack_index : stack_index_type := 0; -- Points to next free elem
 variable state : states := ready;
 variable jump_stack : jump_stack_type;
 variable jump_index : stack_index_type := 0;
 variable top, n1, n2, fibn1, fibn2, fib : natural;
 begin
 wait until clk'event and clk='1';
 if rst = '1' then
 stack_index := 0;
 jump_index := 0;
 state := ready;
 else
 case state is
 when ready => if n_en = '1' then -- Ready and got new input
 -- Read input signal into top of stack
 top := n;
 push (top, stack, stack_index);
 -- Return to finish
 push_jump (finish_point, jump_stack, jump_index);
 state := recurse; -- Next state top of recursion
 end if;
 when recurse => pop (top, stack, stack_index);
 case top is
 when 0 => push (top, stack, stack_index); -- return
 pop_jump (state, jump_stack, jump_index);
 when 1 => push (top, stack, stack_index); -- return
 pop_jump (state, jump_stack, jump_index);
 when others => -- push n onto the stack for use by s1
 push (top, stack, stack_index);
 -- push n-1 onto stack
 n1 := top - 1;
 push (n1, stack, stack_index);
 -- set s1 as the return point
 push_jump (s1, jump_stack, jump_index);
 -- recurse
 state := recurse;
 end case;
 end if;
 end process compute_fib;
end architecture manual;
when s1 => -- n and fib n-1 has been computed and is on the stack
 -- now compute fib n-2
 pop (fibn1, stack, stack_index) ; -- pop fib n-1
 pop (top, stack, stack_index) ; -- pop n
 push (fibn1, stack, stack_index) ; -- push fib n-1 for s2
 n2 := top - 2 ;
 push (n2, stack, stack_index) ; -- push n-2
 -- set s2 as the jump point
 push_jump (s2, jump_stack, jump_index) ;
 -- recurse
 state := recurse ;
when s2 => pop (fibn2, stack, stack_index) ;
 pop (fibn1, stack, stack_index) ;
 fib := fibn1 + fibn2 ;
 push (fib, stack, stack_index) ;
 -- return
 pop_jump (state, jump_stack, jump_index) ;
when finish_point => pop (fib, stack, stack_index) ;
 f <= fib ;
 f_rdy <= '1' ;
 state := release_ready ;
 stack_index := 0 ;
 jump_index := 0 ;
 when release_ready => f_rdy <= '0' ;
 state := ready ;
end case ;
end if ;
end process compute_fib ;
end architecture manual ;
PLDI 1999
\[\begin{align*}
\text{signal } S \text{ in } p \text{ end } & \frac{O\setminus\{S\},k}{\delta_1^k(\text{signal } S \text{ in } p' \text{ end})} \\
\text{signal } S \text{ in } p \text{ end } & \frac{O\setminus\{S\},k}{\delta_1^k(\text{signal } S \text{ in } p' \text{ end})}
\end{align*} \]
POPL 1999

\[
p \xrightarrow{O,k} \frac{p^+}{I \cup \{S\}} p' \quad S \in O
\]

\[
\text{signal } S \text{ in } p \text{ end } \frac{O \setminus \{S\}, k}{I} \delta^k_1\text{(signal } S \text{ in } p' \text{ end)}
\]

\[
p \xrightarrow{O,k} \frac{p'}{I \setminus \{S\}} p' \quad S \notin O
\]

\[
\text{signal } S \text{ in } p \text{ end } \frac{O,k}{I} \delta^k_1\text{(signal } S \text{ in } p' \text{ end)}
\]

\[
\text{emit } S \rightarrow \frac{\{S\}, 0}{\{A\}} \text{ nothing } S \in \{S\}
\]

\[
\text{emit } S \rightarrow \frac{\{S\}, 0}{\{A\}} \text{ nothing } S \in \{S\}
\]

\[
\text{signal } S \text{ in } \text{emit } S \text{ end } \frac{\{S\}, 0}{\{A\}} \text{ nothing}
\]

\[
\text{pause } \rightarrow \frac{\{S\}, 0}{\{A\}} \text{ nothing } S \notin \emptyset
\]

\[
\text{signal } S \text{ in } \text{pause } \rightarrow \frac{\{S\}, 0}{\{A\}} \text{ nothing } S \notin \emptyset
\]

\[
\text{signal } S \text{ in } \text{pause } \rightarrow \frac{\{S\}, 0}{\{A\}} \text{ nothing end}
\]

\[
\text{signal } S \text{ in } \text{nothing end}
\]

\[
\text{signal } S \text{ in } p \text{ end } \frac{O \setminus \{S\}, k^+}{I} \delta^k_1\text{(signal } S \text{ in } p^+ \text{ end)}
\]

\[
\text{signal } S \text{ in } p \text{ end } \frac{O \setminus \{S\}, k^-}{I} \delta^k_1\text{(signal } S \text{ in } p^- \text{ end)}
\]

\[
\text{signal } S \text{ in } p \text{ end } \frac{O \setminus \{S\}, k^-}{I} \delta^k_1\text{(signal } S \text{ in } p^- \text{ end)}
\]

\[
\text{signal } S \text{ in } p \text{ end } \frac{O \setminus \{S\}, k^+}{I} \delta^k_1\text{(signal } S \text{ in } p^+ \text{ end)}
\]

Proof. Structural induction on \(p \). Let us consider the case \(p = \text{"signal } S \text{ in } q \text{ end"} \). By hypothesis, \(p \xrightarrow{O_0, k_0} q_0 \). As \((\text{signal}++)\) or \((\text{signal}--)\) must be used to define this reaction, there exist \(O_0^-, k_0^-, q_0^-; O_0^+, k_0^+, q_0^+ \) such that:

\[
q \xrightarrow{O_0^-, k_0^-} q_0^- \quad \text{and} \quad q \xrightarrow{O_0^+, k_0^+} q_0^+
\]

Then, using Lemma 3.1,

- either \(S \notin O_0^-, S \notin O_0^+, O_0 = O_0^-, k_0 = k_0^-; p_0 = \delta^k_1\text{(signal } S \text{ in } q_0^- \text{ end)}\),
- or \(S \in O_0^-, S \in O_0^+, O_0 = O_0^+ \setminus \{S\}, k_0 = k_0^+, p_0 = \delta^k_1\text{(signal } S \text{ in } q_0^+ \text{ end)}\).
Our goal

• Write a functional program, with
 – Unrestricted recursion
 – Algebraic data types
 – Heap allocation

• Compile it quickly to FPGA
• Main payoff: rapid development, exploration
• Non-goal: squeezing the last drops of performance from the hardware

Generally: significantly broaden the range of applications that can be directly compiled into hardware with no fuss
Applications

- Searching tree-structured dictionaries
- Directly representing recursive algorithms in hardware
- Huffman encoding
- Recursive definitions of mathematical operations
Compiling programs to hardware

• First order functional language
• Inline (absolutely) all function calls
• Result can be directly interpreted as hardware
• Every call instantiates a copy of that function’s RHS
• No recursive functions
• [Readily extends to unrolling recursive functions with statically known arguments]
Our simple idea

- Extend “Every call instantiates a copy of that function’s RHS” to recursive functions

```haskell
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = 1 + fib (n-1) + fib (n-2)

main x y = fib x * fib y
```
Our simple idea

• Extend "Every call instantiates a copy of that function’s RHS" to recursive functions

```
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = 1 + fib (n-1) + fib (n-2)
main x y = fib x * fib y
```

Question: what is in these “fib” boxes?
Our simple idea

- Extend “Every call instantiates a copy of that function’s RHS” to recursive functions

```haskell
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = 1 + fib (n-1) + fib (n-2)
main x y = fib x * fib y
```

Non-answer: instantiate the body of `fib`
Our “island” intermediate language

- The Island Intermediate Language is
 - Low level enough that it’s easy to convert to VHDL
 - High level enough that it’s (fairly) easy to convert Haskell into it
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = 1 + fib (n-1) + fib (n-2)

island {
fib n = case n of
 0 -> return 1
 1 -> return 1
 _ -> let n1 = n-1
 in recurse n1 [s1 n]

s1 n r1 = let n2 = n-2
 in recurse n2 [s2 r1]

s2 r1 r2 = let r = 1+r1+r2
 in return r
}
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = 1 + fib (n-1) + fib (n-2)

island {
 fib n = case n of
 0 -> return 1
 1 -> return 1
 _ -> let n1 = n-1
 in recurse fib n1 [s1 n]

 [s1 n] r1 = let n2 = n-2
 in recurse fib n2 [s2 r1]

 [s2 r1] r2 = let r = 1+r1+r2
 in return r }
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = 1 + fib (n-1) + fib (n-2)

island {
 fib n = case n of
 0 -> return 1
 1 -> return 1
 _ -> let n1 = n-1
 in recurse fib n1 [s1 n]

 [s1 n] r1 = let n2 = n-2
 in recurse fib n2 [s2 r1]

 [s2 r1] r2 = let r = 1+r1+r2
 in return r
}

<table>
<thead>
<tr>
<th>State</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib 2</td>
<td>ε</td>
</tr>
<tr>
<td>fib 1</td>
<td>[s1 2]:ε</td>
</tr>
<tr>
<td>[s1 2] 1</td>
<td>ε</td>
</tr>
<tr>
<td>fib 0</td>
<td>[s2 1]:ε</td>
</tr>
<tr>
<td>[s2 1] 1</td>
<td>ε</td>
</tr>
<tr>
<td>return 3</td>
<td></td>
</tr>
</tbody>
</table>

Each step is a combinatorial computation, leading to a new state.
fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = 1 + fib (n-1) + fib (n-2)

island {
 fib n = case n of
 0 -> return 1
 1 -> return 1
 _ -> let n1 = n-1
 in recurse n1 [s1 n]
 [s1 n] r1 = let n2 = n-2
 in recurse n2 [s2 r1]
 [s2 r1] r2 = let r = 1+r1+r2
 in return r
}
data IIR
 = ADD IIRExpr IIRExpr IIRExpr
 | SUB IIRExpr IIRExpr IIRExpr
 | MUL IIRExpr IIRExpr IIRExpr
 | GREATER IIRExpr IIRExpr IIRExpr
 | EQUAL IIRExpr IIRExpr IIRExpr

... |
 | ASSIGN IIRExpr IIRExpr
 | CASE [IIR] IIRExpr [(IIRExpr, [IIR])]
 | CALL String [IIRExpr]
 | TAILCALL [IIRExpr]
 | RETURN IIRExpr
 | RECURSE [IIRExpr] State [IIRExpr]
 deriving (Eq, Show)
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = n1 + n2
 where
 n1 = fib (n - 1)
 n2 = fib (n - 2)
$./haskell2vhdl Fib.hs
Compiling Fib.hs
Writing Fib_fib.vhd ...
[done]
STATE 1 FREE

PRECASE

ds1 := ds

CASE ds1

WHEN 1 =>
RETURN 1

WHEN 0 =>
RETURN 0

WHEN others =>
 v0 := ds1 - 2
 RECURSE [v0] 2 [ds1]

END CASE

STATE 3 FREE n2

n1 := resultInt
v2 := n1 + n2
RETURN v2

STATE 2 FREE ds1

n2 := resultInt
v1 := ds1 - 1
RECURSE [v1] 3 [n2]
gcd_dijkstra :: Int -> Int -> Int
gcd_dijkstra m n
 = if m == n then
 m
 else
 if m > n then
 gcd_dijkstra (m - n) n
 else
 gcd_dijkstra m (n - m)
STATE 1 FREE
PRECASE
v0 := m == n
wild := v0
CASE wild
WHEN true =>
 RETURN m
WHEN false =>
 PRECASE
 v1 := m > n
 wild1 := v1
 CASE wild1
 WHEN true =>
 v2 := m - n
 TAILCALL [v2, n]
 WHEN false =>
 v3 := n - m
 TAILCALL [m, v3]
 END CASE
END CASE
END CASE
$ make gcdtest
Time: 1450 ns Iteration: 1 Instance: /gcdtest/fib_circuit
** Note: Parameter n = 6
Time: 1450 ns Iteration: 1 Instance: /gcdtest/fib_circuit
** Note: GCD 12 126 = 6
Time: 1500 ns Iteration: 0 Instance: /gcdtest
quit
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n
 = n1 + n2
where
 n1 = fib (n - 1)
n2 = fib (n - 2)