Termination combinators forever

Simon Peyton Jones (Microsoft Research) Max Bolingbroke (University of Cambridge)

2011

Termination testing is useful

- …in compilers
- …in supercompilers
- …in theorem provers
- It's a useful black box.
- But it should be modularly separated from the rest of your compiler/theorem prover/whatever
- (The typical reality is otherwise.)

The problem

- Online termination detection
- Given a sequence of values, x0, x1, x2...
- ...presented one by one...
- ...yell "stop" if it looks as if the sequence might be diverging
- Guarantee never to let through an infinite sequence
- Delay "stop" as long as possible
- "Values" includes pairs, strings, trees....

Concretely

data TTest a
testList :: TTest a -> [a] -> Bool

- Postpone: where do TTests come from?
- Note: testList is inherently inefficient for the "present one at a time" situation

Better...

data History a initHistory :: TTest a -> History a

data TestResult a = Stop | Continue (History a)
test :: History a -> a -> TestResult a

Intuitively the History accumulates (some abstraction of) the values seem so far

Creating TTests

- The goal: a library that makes it easy to construct values of type TTest a, that
 - Are definitely sound: they do not admit infinite sequences
 - Are lenient as possible: they do not blow the whistle too soon

Creating TTests

intT	:: TTest Int
boolT	:: TTest Bool
pairT	:: TTest a -> TTest b -> TTest (a, b)
eitherT	:: TTest a -> TTest b -> TTest (Either a b)
wrapT	:: (a -> b) -> TTest b -> TTest a

Just the usual type-directed combinator library

Implementing TTests

- How do we implement a TTest?
- Find a strictly-decreasing measure bounded below.
- This is VERY INCONVENIENT in many cases. Think about a sequence of syntax trees.
- Well-studied problem, standard approach: use a well-quasi order (WQO).

Well-quasi orders

 $\begin{array}{l} \hline \textbf{Definition}\\ A \text{ transitive binary relation } \leq \text{ is a WQO}\\ & \text{iff}\\ \hline For \text{ any infinite sequence}\\ & x_0, x_1, x_2...\\ & \text{there exists i } \text{i } \text{st } x_i \leq x_i \end{array}$

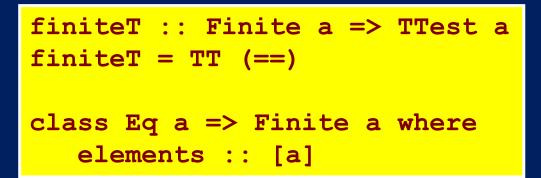
Theorem: every WQO is reflexive

From WQOs to TTests

```
newtype TTest a = TT (a -> a -> Bool)
data History a = H (a->a->Bool) [a]
initHistory :: TTest a -> History a
initHistory (TT wqo) = H wqo []
test :: History a -> a -> TestResult a
test (H wqo vs) v
| any (`wqo` v) vs = Stop
| otherwise = Continue (H wqo (v:vs))
```

New goal: a (trusted) library that helps you to define (sparse) WQOs, that really are WQOs

Finite sets



- Is (==) a WQO on finite sets? Yes.
- Odd; we don't use the methods of Finite
- Instead, Finite is really a proof obligation:
 - There are only a finite number of elements of a
 (==) is reflexive

Sums

eitherT:: TTest a -> TTest b -> TTest (Either a b)
eitherT (TT wqo_a) (TT wqo_b) = TT wqo
 where
 (Left x) `wqo` (Left y) = x `wqo_a` y
 (Right x) `wqo` (Right y) = x `wqo_b` y
 `wqo` _ = False

Is this a WQO? Why?

Products

pairT:: TTest a -> TTest b -> TTest (a,b)
pairT (TT wqo_a) (TT wqo_b) = TT wqo
where
 (x1,x2) `wqo` (y1,y2) =

Products

<pre>pairT:: TTest a -> TTest b -> TTest (a,b)</pre>
pairT (TT wqo_a) (TT wqo_b) = TT wqo
where
(x1,x2) `wqo` (y1,y2) = x1 `wqo_a` y1
<u>&& x2 `wqo_b` y2</u>

- But is this a WQO?
- For any infinite sequence (x0,y0), (x1,y1), ... can we be sure there is an i<j, st xi ≤ xj, and yi ≤ yj ?

Yes, and the proof is both simple and beautiful

Back to WQOs

- Theorem. If (≤) is a WQO, then for any infinite sequence x₀, x₁, x₂, ... there is a finite N such that for any i>N there is a j>i such that x_i ≤ x_j
- That is, after some point N, every x_i is ≤ a later x_j

Proof: Consider $\{x_i | \not\exists j > i. x_i \le x_j\}$

Corollary: every infinite sequence has a chain $x_{i1} \le x_{i2} \le x_{i3} \le ...$

Cofunctors

 Exercise: modify the implementation of TTest and History to avoid the repeated reapplication of f.

Even more fun...recursive types

```
unwrap :: [a] -> Either () (a, [a])
unwrap [] = Left ()
unwrap (x:xs) = Right (x,xs)
listT :: forall a. TTest a -> TTest [a]
listT telt = tlist
where
tlist :: TTest [a]
tlist = cofmap unwrap $
eitherT finiteT
(pairT telt tlist)
```

- The types are right
- We are only using library combinators
- Does it work?

Lists

```
unwrap :: [a] -> Either () (a, [a])
unwrap [] = Left ()
unwrap (x:xs) = Right (x,xs)
listT :: forall a. TTest a -> TTest [a]
listT telt = tlist
where
   tlist :: TTest [a]
   tlist = cofmap unwrap $
        eitherT finiteT
        (pairT telt tlist)
```

- Consider [], [1], [1,1], [1,1,1], [1,1,1],
- An infinite sequence... accepted!
- What has gone wrong?

The problem

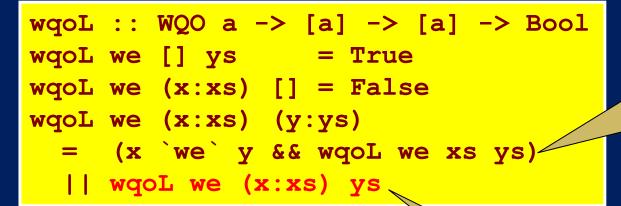
We assumed that tlist was WQO when proving that it is a WQO!

tlist :: TTest [a]
tlist = cofmap unwrap \$
 eitherT finiteT
 (pairT telt tlist)

Sort-of solution: make the combinators strict, so tlist is bottom

But we still want a termination checker for lists!

Homeomorphic embedding

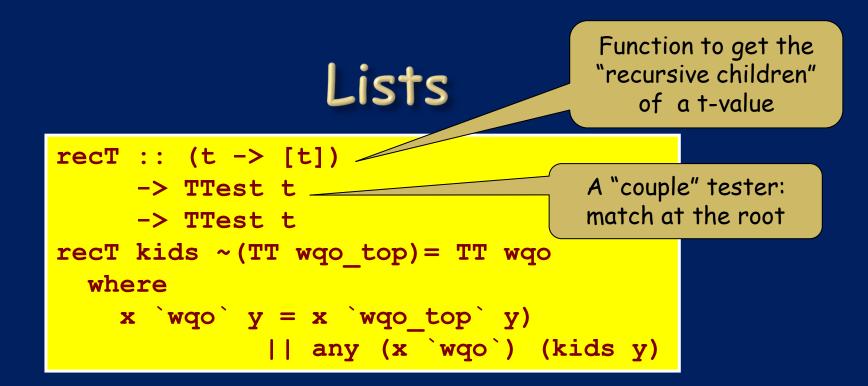


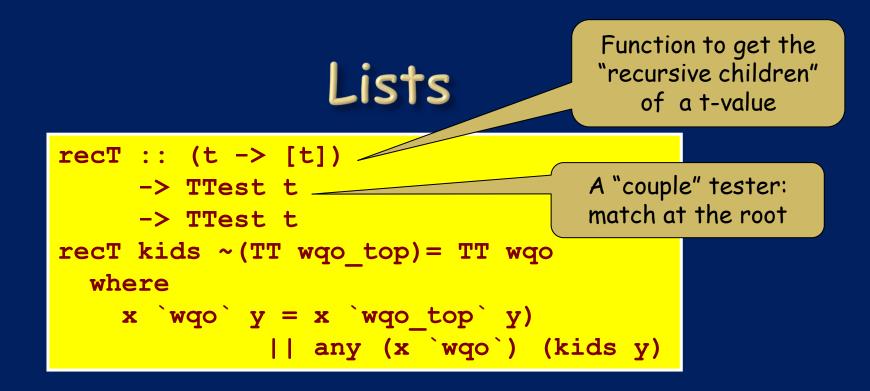
"Couple": See if they match at the root

- This actually is a WQO
- The proof is not obvious, at all
- Q1: find an elegant proof

"Dive": See if the first arg matches inside the recursive component of the second arg


```
listT :: TTest t -> TTest [t]
listT telt = tlist
where
tlist :: TTest [a]
tlist = recT kids $
            cofmap unwrap $
            eitherT finiteT
                      (pairT telt tlist)
kids [] = []
kids (x:xs) = [xs]
```





- Q2: is this the best formulation?
- Q3: what is the proof obligation for "kids"
- Q4: solve nasty interaction with cofmap
- Q5: Elucidate relationship to R+

Summary

- A combinator library for online termination testing
- A useful black box, never previously abstracted out as such
- Encapsulates tricky theorems inside a nice, compositional interface