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 ...in compilers

 ...in supercompilers

 ...in theorem provers

It’s a useful black box.  

 But it should be modularly separated from 
the rest of your compiler/theorem 
prover/whatever

 (The typical reality is otherwise.)



 Online termination detection

 Given a sequence of values, x0, x1, x2...

 ...presented one by one...

 ...yell “stop” if it looks as if the sequence might 
be diverging

 Guarantee never to let through an infinite 
sequence

 Delay “stop” as long as possible

 “Values” includes pairs, strings, trees....



 Postpone: where do TTests come from?

 Note: testList is inherently inefficient for 
the “present one at a time” situation

data TTest a

testList :: TTest a -> [a] -> Bool



 Intuitively the History accumulates (some 
abstraction of) the values seem so far

data History a

initHistory :: TTest a -> History a

data TestResult a = Stop | Continue (History a)

test :: History a -> a -> TestResult a 



 The goal: a library that makes it easy to 
construct values of type TTest a, that
 Are definitely sound: they do not admit infinite 

sequences

 Are lenient as possible: they do not blow the 
whistle too soon



 Just the usual type-directed combinator
library

intT :: TTest Int

boolT :: TTest Bool

pairT :: TTest a  -> TTest b -> TTest (a, b)

eitherT :: TTest a  -> TTest b -> TTest (Either a b)

wrapT :: (a -> b) -> TTest b -> TTest a



 How do we implement a TTest?

 Find a strictly-decreasing measure bounded 
below.

 This is VERY INCONVENIENT in many 
cases.  Think about a sequence of syntax 
trees.

 Well-studied problem, standard approach: 
use a well-quasi order (WQO).



Theorem: every WQO is reflexive

Definition
A transitive binary relation ≤ is a WQO 

iff
For any infinite sequence

x0, x1, x2....
there exists i<j st xi ≤ xj



 New goal: a (trusted) library that helps you 
to define (sparse) WQOs, that really are 
WQOs

newtype TTest a = TT (a -> a -> Bool)

data History a = H (a->a->Bool) [a]

initHistory :: TTest a -> History a

initHistory (TT wqo) = H wqo []

test :: History a -> a -> TestResult a

test (H wqo vs) v

| any (`wqo` v) vs = Stop

| otherwise        = Continue (H wqo (v:vs))



 Is (==) a WQO on finite sets? Yes.

 Odd; we don’t use the methods of Finite

 Instead, Finite is really a proof obligation:
 There are only a finite number of elements of a

 (==) is reflexive

finiteT :: Finite a => TTest a

finiteT = TT (==)

class Eq a => Finite a where

elements :: [a]



 Is this a WQO?  Why?  

eitherT:: TTest a -> TTest b -> TTest (Either a b)

eitherT (TT wqo_a) (TT wqo_b) = TT wqo

where

(Left x)  `wqo` (Left y)  = x `wqo_a` y

(Right x) `wqo` (Right y) = x `wqo_b` y

_ `wqo` _ = False



pairT:: TTest a -> TTest b -> TTest (a,b)

pairT (TT wqo_a) (TT wqo_b) = TT wqo

where

(x1,x2) `wqo` (y1,y2) = ....



 But is this a WQO?

 For any infinite sequence (x0,y0), (x1,y1), ...
can we be sure there is an i<j, st

xi ≤ xj, and yi ≤ yj
?

 Yes, and the proof is both simple and beautiful

pairT:: TTest a -> TTest b -> TTest (a,b)

pairT (TT wqo_a) (TT wqo_b) = TT wqo

where

(x1,x2) `wqo` (y1,y2) = x1 `wqo_a` y1 

&& x2 `wqo_b` y2 



Theorem.  If (≤) is a WQO, then 
for any infinite sequence x0, x1, x2, ... 
there is a finite N such that
for any i>N
there is a j>i
such that xi ≤ xj

That is, after some point N, 
every xi is ≤ a later xj

Proof: Consider {xi | j>i. xi ≤ xj }

Corollary: every infinite sequence has a chain 
xi1 ≤ xi2 ≤ xi3 ≤ ...



 Exercise: modify the implementation of 
TTest and History to avoid the repeated re-
application of f.

wrapT:: (b->a) -> TTest a -> TTest b

wrapT f (TT wqo_a) = TT wqo_b

where

x `wqo_b` y = f x `wqo_a` f y

instance CoFunctor TTest where

cofmap = wrapT



 The types are right

 We are only using library combinators

 Does it work?

unwrap :: [a] -> Either () (a, [a])

unwrap []     = Left ()

unwrap (x:xs) = Right (x,xs)

listT :: forall a. TTest a -> TTest [a]

listT telt = tlist

where

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist) 



 Consider [], [1], [1,1], [1,1,1], [1,1,1,1], ....

 An infinite sequence... accepted!

 What has gone wrong?

unwrap :: [a] -> Either () (a, [a])

unwrap []     = Left ()

unwrap (x:xs) = Right (x,xs)

listT :: forall a. TTest a -> TTest [a]

listT telt = tlist

where

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist) 



 We assumed that tlist was WQO when 
proving that it is a WQO!

 Sort-of solution: make the combinators
strict, so tlist is bottom

 ...But we still want a termination checker for 
lists!

tlist :: TTest [a]

tlist = cofmap unwrap $

eitherT finiteT

(pairT telt tlist) 



 This actually is a WQO

 The proof is not obvious, at all

 Q1: find an elegant proof

wqoL :: WQO a -> [a] -> [a] -> Bool

wqoL we [] ys = True

wqoL we (x:xs) [] = False

wqoL we (x:xs) (y:ys) 

=  (x `we` y && wqoL we xs ys)

|| wqoL we (x:xs) ys

“Couple”: 
See if 
they 

match at 
the root

“Dive”: See if 
the first arg

matches inside 
the recursive 
component of 

the second arg



recT :: (t -> [t]) 

-> TTest t 

-> TTest t

Function to get the 
“recursive children” 

of  a t-value

A “couple” tester: 
match at the root

listT :: TTest t -> TTest [t]

listT telt = tlist

where

tlist :: TTest [a]

tlist = recT kids $

cofmap unwrap $

eitherT finiteT

(pairT telt tlist)

kids [] = []

kids (x:xs) = [xs] 



recT :: (t -> [t]) 

-> TTest t

-> TTest t

recT kids ~(TT wqo_top)= TT wqo

where

x `wqo` y = x `wqo_top` y)

|| any (x `wqo`) (kids y)

Function to get the 
“recursive children” 

of  a t-value

A “couple” tester: 
match at the root



 Q2: is this the best formulation?

 Q3: what is the proof obligation for “kids”

 Q4: solve nasty interaction with cofmap

 Q5: Elucidate relationship to R+

recT :: (t -> [t]) 

-> TTest t

-> TTest t

recT kids ~(TT wqo_top)= TT wqo

where

x `wqo` y = x `wqo_top` y)

|| any (x `wqo`) (kids y)

Function to get the 
“recursive children” 

of  a t-value

A “couple” tester: 
match at the root



 A combinator library for online termination 
testing

 A useful black box, never previously 
abstracted out as such

 Encapsulates tricky theorems inside a nice, 
compositional interface


