Reagents:

~unctional programming
meets scalable concurrency

Aaron luron
Northeastern University




Concurrency # Parallelism

Concurrency is overlapped
execution of processes.

Parallelism is simultaneous
execution of computations.
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T'he trouble 1s that essentially all the interesting
applications of concurrency wmvolve the deliberate and
controlled mutation of shared state, such as screen
real estate, the file system, or the internal data
structures of the program. The right solution,
therefore, 1s to provide mechanisms which

allow (though alas they cannot enforce) the
safe mutation of shared state.

-- Peyton Jones, Gordon, and Finne
in Goncurrent Haskell
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Concurrency N Parallelism
= Scalable Concurrency

Use cases:

® Concurrent programs on parallel hardware
(e.g. OS kernels)

® |Implementing parallel abstractions
(e.g. work stealing for data parallelism)

® “|last mile” of parallel programming
(where we must resort to concurrency)




class LockCounter {

private var c: =0
private var 1 = new Lock
def 1inc: = {

L.lock()

val old = c

c =old + 1

L.unlock()

old
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class CASCounter {
private var ¢ = new AtomicRef]| 1(0)
def 1inc: = {
while (true) {
val old = ¢
1f (c.cas(old, old+1l)) return old

}
}
}
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A simple test

® |ncrement counter
® Busywait for t cycles (no cache interaction)

® Repeat
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Results for 98% parallelism
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What's going on here!




What's going on here!

Communication

Cost

Coarse-grained Fine-grained




Nehalem Quadcore
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java.util.concurrent

Synchronization Data structures

Reentrant locks Queues

Semaphores Nonblocking

R/WV locks Blocking (array & list)
Reentrant R/WV locks Synchronous
Condition variables Priority, nonblocking
Countdown latches Priority, blocking
Cyclic barriers Deques

Phasers Sets

Exchangers Maps (hash & skiplist)
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class TreiberStack|[’ ] {
private val head =
new AtomicRef| ] (N11)

def push(a: ") {
val backoff = new Backoff
while (true) {
val cur = head.get()
1f (head.cas(cur, a :: cur)) return
backoff.once()

}
}
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def tryPop(): = {
val backoff = new Backoff
while (true) {
val cur = head.get()
cur match {
case Nil => return None
case a::tail =
1f (head.cas(cur, tail))
return Some(a)
s
backoff.oncel()
s
s
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The Problem:

Concurrency libraries are
, but hard to
build and extenda




The Proposal:

Build and extend scalable
concurrent algorithms using
a with shared-state and
message-passing operations




Design
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Reagents are (first) arrows

Lambda abstraction: __A_®i>




Reagents are (first) arrows

Lambda abstraction: __A_®i>
Reagent abstraction: —LIEI—B>
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Chan (A, B]

C
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Message passing

e e e ——

N S

Saturday, November 10, 12



Message passing
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Message passing Shared state
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Message passing Shared state
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Message passing Shared state

:

\4

AB
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Message passing Shared state

O
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Disjunction
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Message passing Shared state

\4

Disjunction

AN ~{r}=
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Message passing

\/

Disjunction

Shared state

O

B, C
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Message passing Shared state

Disjunction Conjunction
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Lambda abstraction: __A_®i>
Reagent abstraction: —LIEI—B>
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Lambda abstraction: __A_®L>
Reagent abstraction: ——A—EI—B>
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Lambda abstraction: __A_®L>

application: f(a) = b

Reagent abstraction: ——A—EI—B>

Saturday, November 10, 12



Lambda abstraction: __A_®L>

application: f(a) = b

Reagent abstraction: ——A—EI—B>

apply as reactant: R!'a=b
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Lambda abstraction:

application:

Reagent abstraction:

apply as reactant:
apply as catalyst:

R!'a=b
dissolve(R)
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Chan|Unit,Int
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Chan|Unit,Int

' Unit Int
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Chan|Unit,Int
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Chan|Unit,Int
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Chan|Unit,Int

Unit Int
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Chan|Unit,Int

Unit Int
000 3

\/

A

Unit Int

Saturday, November 10, 12



N~ N~
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“Receive” “Send”
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“Receive” “Send”
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Pipeline catalyst
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Pipeline catalyst
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NB: transfer is atomic




A,B
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2-way join

A,B




Abortable 2-way join

A,B




Join Calculus

ci(x)) & - - - &cn(xn) = €




Join Calculus

ci(x)) & - - - &cn(xn) = €
becomes

(swap €| * * * * * swap Cn)
>>> postCommit e




Join Calculus

ci(x)) & - - - &cn(xn) = €
becomes

(swap €| * * * * * swap Cn)

dissolve _
>>> postCommit e




TreiberStack

head = Ref Nil
push > = upd(head) (cons
tryPop > = upd(head
X :: Xs) => (xs, Some(x

Nil => (Nil, None
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TreiberStack

head = Ref N1l
push > = upd(head) (cons
tryPop > = upd(head
X :: Xs) => (xs, Some(x
Nil => (N1i1l, None
pop > = upd(head

X :: Xs) => (xs, X
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TreiberStack

head = Ref N1l
upd(head) (cons

upd(head) (trySplit
upd(head) (split

push
tryPop
pop
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TreiberStack
head = Ref Nil

push = upd(head) (cons
tryPop = upd(head) (trySplit
pop = upd(head) (split
EliminationStack
stack = TreiberStack
send, recv) = Chan
push = stack.push + swap(send)

pop stack.pop + swap(recv)
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stackl.pop >>> stack2.push
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Going Monadic

Head Tail

/ \
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Going Monadic

Head Tail

/ \

Elag— Cl9— (X

computed: A - (() » B) - (A » B




Use invisible side-effects to
traverse the queue while
computing the upd
operation to perform
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Implementation




Phase | Phase 2
*
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Phase | Phase 2
*

Accumulate CASes
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Phase | Phase 2
*

Accumulate CASes
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_t

Accumulate CASes
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Permanent failure

ILI-—-I

Accumulate CASes
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Permanent failure

Transient failure

Accumulate CASes
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Permanent failure
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Permanent failure

Transient failure
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Permanent failure

Transient failure

Transient failure
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Permanent failure

Transient failure

Transient failure
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Permanent failure
ransient failure
N

Transient failure

P&P=P  P&T=T
T&T=T  T&P=T
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s this just STM!?




s this just STM!?
No:

- Single CAS collapses to single phase
- Multiple CASes to single location forbidden
So the “redo log” is write-only for phase |!

Therefore:
- Treiber stack is really a Treiber stack
- Pay for kCAS only for compositions




s this just STM!?

Isolation Interaction
Shared state Message passing




s this just STM!?

Isolation Interaction
Shared state Message passing
Using lock-free bags,

based on earlier work
with Russo [OOPSLA’| | ]




Treiber sta

ck
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Stack transfer
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Open Questions

® Composition and invisible read/writes
® Find a better rule?
® Statically detect bad cases!?
® Composition with lock-based algorithms!?

® (Conflicts between interaction and
isolation?

Saturday, November 10, 12



Open Questions 2

® Guaranteed inlining
® Read/CAS windows must be short
® “CAPER” with Sam Tobin-Hochstadt
® Formal semantics

® |ntegrate Haskell's STM semantics with
message-passing!?




Related work

Joins CML STM




Related work

Joins CML STM

Transactional events
Communicating transactions
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