
Reagents:
Functional programming 

meets scalable concurrency

Aaron Turon
Northeastern University

Saturday, November 10, 12



Concurrency ≠ Parallelism

Concurrency is overlapped
execution of processes.

Parallelism is simultaneous 
execution of computations.

Saturday, November 10, 12



The trouble is that essentially all the interesting 
applications of concurrency involve the deliberate and 
controlled mutation of shared state, such as screen 
real estate, the file system, or the internal data 
structures of the program.  The right solution, 
therefore, is to provide mechanisms which 
allow (though alas they cannot enforce) the 
safe mutation of  shared state.

-- Peyton Jones, Gordon, and Finne 
in Concurrent Haskell

Saturday, November 10, 12



Concurrency ⋂ Parallelism

• Concurrent programs on parallel hardware 
(e.g. OS kernels) 

• Implementing parallel abstractions         
(e.g. work stealing for data parallelism)

• “Last mile” of parallel programming      
(where we must resort to concurrency)

= Scalable Concurrency
Use cases:

Saturday, November 10, 12



class LockCounter {
  private var c: Int = 0
  private var l = new Lock
  def inc: Int = {
    l.lock()
    val old = c
    c = old + 1
    l.unlock()
    old
  }
}

Saturday, November 10, 12



class CASCounter {
  private var c = new AtomicRef[Int](0)
  def inc: Int = {
    while (true) {
      val old = c
      if (c.cas(old, old+1)) return old
    }
  }
}

Saturday, November 10, 12



A simple test
• Increment counter

• Busywait for t cycles (no cache interaction)

• Repeat

Saturday, November 10, 12



Threads

T
hr

ou
gh

pu
t

1 8

Predicted

CAS

Locking

Results for 98% parallelism

Saturday, November 10, 12



Lock-based CAS-based

Threads
2 4 6 8

Threads
2 4 6 8

Pa
ra

lle
lis

m
 (

lo
g-

sc
al

e)

63%

88%

98%

99.7%

99.9%

Throughput
Optimal

1.0 0.87 0.74 0.61 0.48 0.35

Saturday, November 10, 12



What’s going on here?

Saturday, November 10, 12



What’s going on here?
C

os
t

Coarse-grained Fine-grained

Communication

Saturday, November 10, 12



The Nehalem microarchitecture implements the MESIF
cache coherency protocol, an extended version of the well-
known MESI protocol [5, p. 213]. Due to the novelty of
this microarchitecture, we can only refer to a very limited
number of publications that are relevant for our test system.
Some information can be gathered from Intel documents [6],
[7]. However, none of them describe the architecture in much
detail.

We use BenchIT [8] to develop and run our memory
benchmarks as well as for the results evaluation. This
performance measurement suite is designed to run micro-
benchmarks on every POSIX 1.003 compliant system in a
user-friendly way. It helps to compare different algorithms,
implementations of algorithms, properties of the software
stack, and hardware details of whole systems. The software
is available as Open Source.

III. SYSTEM ARCHITECTURE

Previous generation quad-core Xeon processors (Harper-
town) are composed of two dual-core dies each with a shared
L2 cache. In contrast, the Xeon 5500 series processors
(Nehalem-EP) are a native quad-core design. Similar to
quad-core AMD Opteron processors (Shanghai), the L1 and
L2 caches are implemented per core, while the L3 cache is
shared among all cores of one processor. The Front Side Bus
used in previous Intel CPUs is replaced by point-to-point
links called Quick Path Interconnect (QPI). Moreover, each
processor contains its own integrated memory controller
(IMC). The basic design of a two-socket Nehalem system is
depicted in Figure 1.

The Intel Nehalem microarchitecture supports simulta-
neous multithreading (SMT) that allows each core to ex-
ecute two threads in parallel. This technique is well-known
from the Pentium 4 processors based on Intel’s Netburst
microarchitecture. Furthermore, processors based on the
Nehalem microarchitecture feature a dynamic overclocking
mechanism (Intel Turbo Boost Technology) that allows the
processor to raise core frequencies as long as the thermal
limit is not exceeded. Table I shows the key differences
between the Nehalem microarchitecture and other common
x86 64 server CPUs.

Nehalem Quadcore

Core 0

Shared Level 3 Cache

IMC
(3 Channel) QPI

L1

Core 1 Core 2 Core 3

L2 L2L2L2

I/O Hub

L1L1L1

Nehalem Quadcore

Core 4

Shared Level 3 Cache

QPI

L1

Core 5 Core 6 Core 7

L2 L2L2L2

L1L1L1

D
D

R
3 

A

IMC
(3 Channel)

D
D

R
3 

C

D
D

R
3 

B

D
D

R
3 

D

D
D

R
3 

F

D
D

R
3 

E

Figure 1. System overview

Although the basic structure of the memory hierarchy
is similar for Nehalem and Shanghai based processors, the
implementation details differ. While AMD processors use a
“non-inclusive” L3 cache, Intel implements an inclusive last
level cache. “core valid bits” within the L3 cache indicate
that a cache line may be present in a certain core. If a bit is
not set, the associated core certainly does not hold a copy
of the cache line, thus reducing snoop traffic to that core.
However, unmodified cache lines may be evicted from a
core’s cache without notification of the L3 cache. Therefore,
a set core valid bit does not guarantee the presence of
the cache line in a higher level cache. Generally speaking,
the shared last level cache with its core valid bits has the
potential to strongly improve the performance of on-chip
data transfers between cores while filtering most unnecessary
snoop traffic.

Nehalem is the first microarchitecture that uses the MESIF
cache coherency protocol. It extends the MESI protocol used
in previous Xeon generations by a fifth state called forward-
ing. This state allows unmodified data that is shared by two
processors to be forwarded to a third one. We therefore
expect the MESIF improvements to be limited to systems
with more than two processors. The benchmark results of
our dual-processor test system configuration should not be
influenced.

Table I
COMPARISON OF DIFFERENT X86 64 MICROARCHITECTURES

Processor AMD Opteron 238* Intel Xeon 54** Intel Xeon 55**
Microarchitecture Shanghai Harpertown Nehalem-EP

Cache organization non-inclusive inclusive inclusive
Cache coherency protocol MOESI MESI MESIF

Shared last level cache yes no yes
Integrated memory controller yes no yes

Point-to-point processor interconnect yes no yes
Native quad-core design yes no yes

248262

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on February 25,2010 at 15:04:35 EST from IEEE Xplore.  Restrictions apply. 

Saturday, November 10, 12



Saturday, November 10, 12



java.util.concurrent
Synchronization Data structures
Reentrant locks
Semaphores
R/W locks
Reentrant R/W locks
Condition variables
Countdown latches
Cyclic barriers
Phasers
Exchangers

Queues
  Nonblocking
  Blocking (array & list)
  Synchronous
  Priority, nonblocking
  Priority, blocking
Deques
Sets
Maps (hash & skiplist)

Saturday, November 10, 12



class TreiberStack[A] {
  private val head = 
    new AtomicRef[List[A]](Nil)

  def push(a: A) {
    val backoff = new Backoff
    while (true) {
      val cur = head.get()
      if (head.cas(cur, a :: cur)) return
      backoff.once()
    }
  }

...

Saturday, November 10, 12



3 2

Head

Saturday, November 10, 12



3 2

Head

7

Saturday, November 10, 12



3 2

Head

7

5

Saturday, November 10, 12



3 2

Head

7

5

CAS fail

Saturday, November 10, 12



3 2

Head

7

5

Saturday, November 10, 12



3 2

Head

7 5

Saturday, November 10, 12



  def tryPop(): Option[A] = {
    val backoff = new Backoff
    while (true) {
      val cur = head.get() 
      cur match {
        case Nil     => return None
        case a::tail => 
          if (head.cas(cur, tail)) 
            return Some(a)
      }
      backoff.once()
    }
  }

Saturday, November 10, 12



Concurrency libraries are
indispensable, but hard to

build and extend

The Problem:

Saturday, November 10, 12



Build and extend scalable 
concurrent algorithms using

a monad with shared-state and 
message-passing operations

The Proposal:

Saturday, November 10, 12



Design

Saturday, November 10, 12



fA BLambda abstraction:

Reagents are (first) arrows

Saturday, November 10, 12



fA BLambda abstraction:

Reagent abstraction: A BR

Reagents are (first) arrows

Saturday, November 10, 12



c: Chan[A,B]

c

swapA B

Saturday, November 10, 12



c: Chan[A,B]

c

swapA B

c

swap BA

Saturday, November 10, 12



c: Chan[A,B]

c

swapA B

Saturday, November 10, 12



swap

Message passing

Saturday, November 10, 12



swap

r: Ref[A]
f: (A,B)→(A,C)

upd
f

rA A

B C

Message passing

Saturday, November 10, 12



swap
upd
f

Message passing Shared state

Saturday, November 10, 12



swap
upd
f

A BR

A BS

Message passing Shared state

Saturday, November 10, 12



swap
upd
f

R

S
+

A B

Message passing Shared state

Saturday, November 10, 12



swap
upd
f

R

S
+

Message passing Shared state

Disjunction

Saturday, November 10, 12



swap
upd
f

R

S
+

A BR

A CS

Message passing Shared state

Disjunction

Saturday, November 10, 12



swap
upd
f

R

S
+

R

S
*

A (B,C)

Message passing Shared state

Disjunction

Saturday, November 10, 12



swap
upd
f

R

S
+

R

S
*

Message passing Shared state

Disjunction Conjunction

Saturday, November 10, 12



fA BLambda abstraction:

Reagent abstraction: A BR

Saturday, November 10, 12



fA BLambda abstraction:

Reagent abstraction: A BR

Saturday, November 10, 12



fA BLambda abstraction:

Reagent abstraction: A BR

application: f(a) = b

Saturday, November 10, 12



fA BLambda abstraction:

Reagent abstraction: A BR

application: f(a) = b

apply as reactant: R ! a = b

Saturday, November 10, 12



fA BLambda abstraction:

Reagent abstraction: A BR

application: f(a) = b

apply as reactant: R ! a = b
apply as catalyst: dissolve(R)

Saturday, November 10, 12



c: Chan[A,B]

c

swapA B

c

swap BA

Saturday, November 10, 12



c: Chan[Unit,Int]

c

swapUnit

c

swapUnit Int

Int

Saturday, November 10, 12



c: Chan[Unit,Int]

c

swapUnit

c

swapUnit Int

Int!()

!3

Saturday, November 10, 12



c: Chan[Unit,Int]

c

swapUnit

c

swapUnit Int

Int

()

3

Saturday, November 10, 12



c: Chan[Unit,Int]

c

swapUnit

c

swapUnit Int

Intdissolve

!3

Saturday, November 10, 12



c: Chan[Unit,Int]

c

swapUnit

c

swapUnit Int

Int()

!3

...()()() 

Saturday, November 10, 12



c: Chan[Unit,Int]

c

swapUnit

c

swapUnit Int

Int

()

3...()()() 

Saturday, November 10, 12



d

swapA

c

swapUnit Unit

Saturday, November 10, 12



d

swapA

c

swapUnit Unit

“Receive” “Send”

Saturday, November 10, 12



d

swapA

c

swap

“Receive” “Send”

Saturday, November 10, 12



d

swapA

c

swap

Pipeline catalyst

Saturday, November 10, 12



d

swapA

c

swap

Pipeline catalyst

NB: transfer is atomic

Saturday, November 10, 12



d

swap*

c

swap

A B

(A,B)

Saturday, November 10, 12



d

swap*

2-way join

c

swap

A B

(A,B)

Saturday, November 10, 12



d

swap*

2-way join

c

swap

A B

(A,B)

+( )
e

swap

Exn

Saturday, November 10, 12



d

swap*

c

swap

A B

(A,B)

+( )
e

swap

Exn

Abortable 2-way join

Saturday, November 10, 12



Join Calculus

c1(x1) & · · ·  & cn(xn) ⇒ e

Saturday, November 10, 12



Join Calculus

c1(x1) & · · ·  & cn(xn) ⇒ e

(swap c1 * · · ·  * swap cn) 
>>> postCommit e

becomes

Saturday, November 10, 12



Join Calculus

c1(x1) & · · ·  & cn(xn) ⇒ e

(swap c1 * · · ·  * swap cn) 
>>> postCommit e

becomes

dissolve( )
Saturday, November 10, 12



class TreiberStack [A] {
  private val head = new Ref[List[A]](Nil)
  val push   : A  ↣ () = upd(head)(cons)
  val tryPop : () ↣ A? = upd(head) {
    case (x :: xs) => (xs,  Some(x))
    case Nil       => (Nil, None)
  }
}

Saturday, November 10, 12



class TreiberStack [A] {
  private val head = new Ref[List[A]](Nil)
  val push   : A  ↣ () = upd(head)(cons)
  val tryPop : () ↣ A? = upd(head) {
    case (x :: xs) => (xs,  Some(x))
    case Nil       => (Nil, None)
  }
  val pop    : () ↣ A  = upd(head) {
    case (x :: xs) => (xs,  x)
  }
}

Saturday, November 10, 12



class TreiberStack [A] {
  private val head = new Ref[List[A]](Nil)
  val push   = upd(head)(cons)
  val tryPop = upd(head)(trySplit)
  val pop    = upd(head)(split)
}

Saturday, November 10, 12



class TreiberStack [A] {
  private val head = new Ref[List[A]](Nil)
  val push   = upd(head)(cons)
  val tryPop = upd(head)(trySplit)
  val pop    = upd(head)(split)
}

class EliminationStack [A] {
  private val stack = new TreiberStack[A]
  private val (send, recv) = new Chan[A]
  val push = stack.push + swap(send)
  val pop  = stack.pop  + swap(recv)
}

Saturday, November 10, 12



stack1.pop >>> stack2.push

Saturday, November 10, 12



Going Monadic

3 2

Head

5

Tail

X

Saturday, November 10, 12



Going Monadic

3 2

Head

5

Tail

X

computed: A → (() ↣ B) → (A ↣ B)

Saturday, November 10, 12



Use invisible side-effects to 
traverse the queue while 
comput ing the upd 
operation to perform

Saturday, November 10, 12



Implementation

Saturday, November 10, 12



Phase 1 Phase 2

Saturday, November 10, 12



Phase 1 Phase 2

Accumulate CASes

Saturday, November 10, 12



Phase 1 Phase 2

Accumulate CASes Attempt k-CAS

Saturday, November 10, 12



Accumulate CASes Attempt k-CAS

Saturday, November 10, 12



Accumulate CASes Attempt k-CAS

Permanent failure

Saturday, November 10, 12



Accumulate CASes Attempt k-CAS

Permanent failure

Transient failure

Saturday, November 10, 12



Saturday, November 10, 12



Permanent failure

Saturday, November 10, 12



Permanent failure

Transient failure

Saturday, November 10, 12



Permanent failure

Transient failure

Transient failure

Saturday, November 10, 12



Permanent failure

Transient failure

? failure

Transient failure

Saturday, November 10, 12



Permanent failure

Transient failure

? failure

Transient failure

P & P = P
T & T = T

P & T = T
T & P = T

Saturday, November 10, 12



Is this just STM?

Saturday, November 10, 12



Is this just STM?
No:

- Single CAS collapses to single phase
- Multiple CASes to single location forbidden

So the “redo log” is write-only for phase 1!

Therefore: pay-as-you-go
- Treiber stack is really a Treiber stack
- Pay for kCAS only for compositions

Saturday, November 10, 12



Is this just STM?

Isolation
Shared state

Interaction
Message passing

Saturday, November 10, 12



Is this just STM?

Isolation
Shared state

Interaction
Message passing

Using lock-free bags,
based on earlier work

with Russo [OOPSLA’11]

Saturday, November 10, 12



Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Treiber stack
T

h
ro

u
gh

p
u

t 
(it

er
s/
μs

)

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Threads

Saturday, November 10, 12



Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Stack transfer
T

h
ro

u
gh

p
u

t 
(it

er
s/
μs

)

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Th
ro

ug
hp

ut
:

ite
ra

tio
ns

/µ
s

(b
ig

ge
ri

s
be

tte
r)

Threads (on 16-way machine)

Figure 6. Benchmarking results

The results are shown in Fig. 6; the x-axes show thread counts,
while the y-axes show throughput (so larger numbers are better).
The reagent-based data structures perform universally better than
the lock- or STM-based data structures. The results show that
reagents can plausibly competete with hand-built concurrent data
structures, while providing scalable composed operations that are
rarely provided for such data structures.

6. Related work
6.1 Concurrent ML
Concurrent ML [19] was designed to resolve an apparent tension
between abstraction and choice: if protocols are represented ab-
stractly as functions, it is impossible to express the choice of two
abstract protocols. The solution is higher-order concurrency, in
which synchronous message-passing protocols are represented ab-
stractly as events. CML’s events are built up from combinators,
including a choice combinator, communication combinators, and
combinators for arbitrary computations not involving communi-
cation. Reagents are clearly influenced by the design of CML’s
events, and include variants of CML’s core event combinators. But
where CML is aimed squarely at capturing synchronous commu-
nication protocols, reagents are designed for writing and tailoring
fine-grained concurrent data structures and synchronization prim-
itives. This difference in motivation led us to include a number
of additional combinators, including those dealing directly with
shared state.

Originally, CML was focused on managing concurrency rather
than profiting from parallelism, and this focus was reflected in
its implementation. More recently, a parallel implementation of
CML was proposed [20]. The key challenge is resolving uses of
choice both consistently and scalably. It is addressed by sharing:
an event making a choice is enrolled as offering a communication

corresponding to each possible choice, and when a communica-
tion is accepted, the (single, shared) event is atomically marked as
consumed. We follow a similar strategy in dealing with message
passing, but where Parallel CML uses lock-based queues to store
messages, we show how to use lock-free bags for increased par-
allelism (§4). We also show how to incorporate choice resolution
with shared-state updates and our conjunction combinators.

6.2 Software transactional memory
Software transactional memory was originally intended “to provide
a general highly concurrent method for translating sequential object
implementations into non-blocking ones” [22]. This ambitious goal
has led to a remarkable research literature, which has been summa-
rized in textbook form [12]. Much of the research is devoted to
achieving scalability on multiprocessors or multicores, sometimes
by relaxing consistency guarantees or only providing obstruction-
freedom rather than lock-freemdom [10].

Reagents, on the other hand, are aimed at a less ambitious goal:
enabling the concise expression, user tailoring, and composition of
fine-grained concurrent algorithms. That is, unlike STM, reagents
do not attempt to provide a universal fine-grained concurrent algo-
rithm. Instead, they assist in writing and using specific algorithms.

There is a clear tradeoff. Using STM, one can implement a
concurrent stack or queue by simply wrapping a sequential version
in an atomic block, which requires no algorithmic insight and is
simpler than the stack or queue we give in §3. But even with a very
clever STM, these implementations are unlikely to scale as well as
our elimination stack or Michael-Scott queue; some evidence for
that is shown in §5.

Reagents carve out a middle ground between completely hand-
written algorithms and the completely automatic atomic blocks of
STM. When used in isolation, reagents are guaranteed to perform
only the CASes that the hand-written algorithm would, so they in-

9 2011/11/7

Threads

Saturday, November 10, 12



Open Questions

• Composition and invisible read/writes

• Find a better rule?

• Statically detect bad cases?

• Composition with lock-based algorithms?

• Conflicts between interaction and 
isolation?

Saturday, November 10, 12



Open Questions 2

• Guaranteed inlining

• Read/CAS windows must be short

• “CAPER” with Sam Tobin-Hochstadt

• Formal semantics

• Integrate Haskell’s STM semantics with 
message-passing?

Saturday, November 10, 12



Related work

Joins CML STM

Saturday, November 10, 12



Related work

Joins CML STM

Transactional events

Communicating transactions

Saturday, November 10, 12


