Reagents:

~unctional programming
meets scalable concurrency

Aaron luron
Northeastern University

Concurrency # Parallelism

Concurrency is overlapped
execution of processes.

Parallelism is simultaneous
execution of computations.

Saturday, November 10, 12

T'he trouble 1s that essentially all the interesting
applications of concurrency wmvolve the deliberate and
controlled mutation of shared state, such as screen
real estate, the file system, or the internal data
structures of the program. The right solution,
therefore, 1s to provide mechanisms which

allow (though alas they cannot enforce) the
safe mutation of shared state.

-- Peyton Jones, Gordon, and Finne
in Goncurrent Haskell

Saturday, November 10, 12

Concurrency N Parallelism
= Scalable Concurrency

Use cases:

® Concurrent programs on parallel hardware
(e.g. OS kernels)

® |Implementing parallel abstractions
(e.g. work stealing for data parallelism)

® “|last mile” of parallel programming
(where we must resort to concurrency)

class LockCounter {

private var c: =0
private var 1 = new Lock
def 1inc: = {

L.lock()

val old = c

c =old + 1

L.unlock()

old

Saturday, November 10, 12

class CASCounter {
private var ¢ = new AtomicRef]| 1(0)
def 1inc: = {
while (true) {
val old = ¢
1f (c.cas(old, old+1l)) return old

}
}
}

Saturday, November 10, 12

A simple test

® |ncrement counter
® Busywait for t cycles (no cache interaction)

® Repeat

Saturday, November 10, 12

Results for 98% parallelism

Predicted
s
3> CAS
i -
00
= o
N~ N R
— -

1 Threads 3

Lock-based ' CAS-based

= e 99.9%

Ie]

(@) =

“n 99.7% oy s—

00 D

O
— 98%

-

K%

2 88%

S

L

(4]

a 63%

2 4 6 8 2 4 6 8
Threads Threads

Throughput
Optimal

0.87 0.74 0.61 0.48

Saturday, November 10, 12

What's going on here!

What's going on here!

Communication

Cost

Coarse-grained Fine-grained

Nehalem Quadcore

L1 L1 L1
L2 L2 L2

Core O Core 1 @ Core 2@ Core 3

L1
L2

L1
L2

Nehalem Quadcore

Core 4§ Core 5@ Core 6 @ Core 7

L1 L1 L1
L2 L2 L2

Saturday, November 10, 12

Saturday, November 10, 12

java.util.concurrent

Synchronization Data structures

Reentrant locks Queues

Semaphores Nonblocking

R/WV locks Blocking (array & list)
Reentrant R/WV locks Synchronous
Condition variables Priority, nonblocking
Countdown latches Priority, blocking
Cyclic barriers Deques

Phasers Sets

Exchangers Maps (hash & skiplist)

Saturday, November 10, 12

class TreiberStack|[’] {
private val head =
new AtomicRef|] (N11)

def push(a: ") {
val backoff = new Backoff
while (true) {
val cur = head.get()
1f (head.cas(cur, a :: cur)) return
backoff.once()

}
}

Saturday, November 10, 12

Head

l

Bleo—])

Head

l

Bleo—])

(7|f)

Head

/

GBlo— Cl9— 0])

(7|f)

Head

/

GBlo— Cl9— 0])

(7|f) CAS fail

Head

B leg— G l9— (]

)

/

Head

/

TS ol GRS CIES o d €1 D

def tryPop(): = {
val backoff = new Backoff
while (true) {
val cur = head.get()
cur match {
case Nil => return None
case a::tail =
1f (head.cas(cur, tail))
return Some(a)
s
backoff.oncel()
s
s

Saturday, November 10, 12

The Problem:

Concurrency libraries are
, but hard to
build and extenda

The Proposal:

Build and extend scalable
concurrent algorithms using
a with shared-state and
message-passing operations

Design

Saturday, November 10, 12

Reagents are (first) arrows

Lambda abstraction: __A_®i>

Reagents are (first) arrows

Lambda abstraction: __A_®i>
Reagent abstraction: —LIEI—B>

Saturday, November 10, 12

Saturday, November 10, 12

Chan (A, B]

C

Saturday, November 10, 12

Message passing

e e e ——

N S

Saturday, November 10, 12

Message passing

Saturday, November 10, 12

Message passing Shared state

Saturday, November 10, 12

Message passing Shared state

Saturday, November 10, 12

Message passing Shared state

:

\4

AB

Saturday, November 10, 12

Message passing Shared state

O

\/

Disjunction

Saturday, November 10, 12

Message passing Shared state

\4

Disjunction

AN ~{r}=

Saturday, November 10, 12

Message passing

\/

Disjunction

Shared state

O

B, C

Saturday, November 10, 12

Message passing Shared state

Disjunction Conjunction

Saturday, November 10, 12

Lambda abstraction: __A_®i>
Reagent abstraction: —LIEI—B>

Saturday, November 10, 12

Lambda abstraction: __A_®L>
Reagent abstraction: ——A—EI—B>

Saturday, November 10, 12

Lambda abstraction: __A_®L>

application: f(a) = b

Reagent abstraction: ——A—EI—B>

Saturday, November 10, 12

Lambda abstraction: __A_®L>

application: f(a) = b

Reagent abstraction: ——A—EI—B>

apply as reactant: R!'a=b

Saturday, November 10, 12

Lambda abstraction:

application:

Reagent abstraction:

apply as reactant:
apply as catalyst:

R!'a=b
dissolve(R)

Saturday, November 10, 12

Chan|Unit,Int

Unit W Int
N P

\/

A

/ \
Unit Int

Saturday, November 10, 12

Chan|Unit,Int

' Unit Int
1() ~ ~

\/

A

AN 2
Unit Int -

Saturday, November 10, 12

Chan|Unit,Int

Unit W Int o
N P

\/

A

Unit Int

Saturday, November 10, 12

Chan|Unit,Int

dissolve —oit W Lnt
NP o

\/

A

AN 2
Unit Int -

Saturday, November 10, 12

Chan|Unit,Int

Unit Int
...()()()()

\/

A

AN 2
Unit Int -

Saturday, November 10, 12

Chan|Unit,Int

Unit Int
000 3

\/

A

Unit Int

Saturday, November 10, 12

N~ N~

Saturday, November 10, 12

“Receive” “Send”

N O N O

7 . \/

Saturday, November 10, 12

“Receive” “Send”

Saturday, November 10, 12

Pipeline catalyst

B e N
- N

\/

Pipeline catalyst

B e N
- N

\/

NB: transfer is atomic

A,B

Saturday, November 10, 12

2-way join

A,B

Abortable 2-way join

A,B

Join Calculus

ci(x)) & - - - &cn(xn) = €

Join Calculus

ci(x)) & - - - &cn(xn) = €
becomes

(swap €| * * * * * swap Cn)
>>> postCommit e

Join Calculus

ci(x)) & - - - &cn(xn) = €
becomes

(swap €| * * * * * swap Cn)

dissolve _
>>> postCommit e

TreiberStack

head = Ref Nil
push > = upd(head) (cons
tryPop > = upd(head
X :: Xs) => (xs, Some(x

Nil => (Nil, None

Saturday, November 10, 12

TreiberStack

head = Ref N1l
push > = upd(head) (cons
tryPop > = upd(head
X :: Xs) => (xs, Some(x
Nil => (N1i1l, None
pop > = upd(head

X :: Xs) => (xs, X

Saturday, November 10, 12

TreiberStack

head = Ref N1l
upd(head) (cons

upd(head) (trySplit
upd(head) (split

push
tryPop
pop

Saturday, November 10, 12

TreiberStack
head = Ref Nil

push = upd(head) (cons
tryPop = upd(head) (trySplit
pop = upd(head) (split
EliminationStack
stack = TreiberStack
send, recv) = Chan
push = stack.push + swap(send)

pop stack.pop + swap(recv)

Saturday, November 10, 12

stackl.pop >>> stack2.push

Saturday, November 10, 12

Going Monadic

Head Tail

/ \

Elag— Cl9— (X

Going Monadic

Head Tail

/ \

Elag— Cl9— (X

computed: A - (() » B) - (A » B

Use invisible side-effects to
traverse the queue while
computing the upd
operation to perform

Saturday, November 10, 12

Implementation

Phase | Phase 2
*

Saturday, November 10, 12

Phase | Phase 2
*

Accumulate CASes

Saturday, November 10, 12

Phase | Phase 2
*

Accumulate CASes

Saturday, November 10, 12

_t

Accumulate CASes

Saturday, November 10, 12

Permanent failure

ILI-—-I

Accumulate CASes

Saturday, November 10, 12

Permanent failure

Transient failure

Accumulate CASes

Saturday, November 10, 12

Saturday, November 10, 12

Permanent failure

Saturday, November 10, 12

Permanent failure

Transient failure

Saturday, November 10, 12

Permanent failure

Transient failure

Transient failure

Saturday, November 10, 12

Permanent failure

Transient failure

Transient failure

Saturday, November 10, 12

Permanent failure
ransient failure
N

Transient failure

P&P=P P&T=T
T&T=T T&P=T

Saturday, November 10, 12

s this just STM!?

s this just STM!?
No:

- Single CAS collapses to single phase
- Multiple CASes to single location forbidden
So the “redo log” is write-only for phase |!

Therefore:
- Treiber stack is really a Treiber stack
- Pay for kCAS only for compositions

s this just STM!?

Isolation Interaction
Shared state Message passing

s this just STM!?

Isolation Interaction
Shared state Message passing
Using lock-free bags,

based on earlier work
with Russo [OOPSLA’| |]

Treiber sta

ck

Throughput (iters/s)

2 5 10
Threads

Reagent-based e

Hand-build

Lock-based

STM-based - o

Saturday, November 10, 12

Stack transfer

..h
Ol
|
l

0
ks
|

Reagent-based e

L Lock-based -

STM-based - o

Throughput (iters/s)

o1
|

Threads

Saturday, November 10, 12

Open Questions

® Composition and invisible read/writes
® Find a better rule?
® Statically detect bad cases!?
® Composition with lock-based algorithms!?

® (Conflicts between interaction and
isolation?

Saturday, November 10, 12

Open Questions 2

® Guaranteed inlining
® Read/CAS windows must be short
® “CAPER” with Sam Tobin-Hochstadt
® Formal semantics

® |ntegrate Haskell's STM semantics with
message-passing!?

Related work

Joins CML STM

Related work

Joins CML STM

Transactional events
Communicating transactions

Saturday, November 10, 12

