A different kind of functional language

John Reppy
University of Chicago / NSF

November 2012

Parallel languages research

» Manticore: Parallel SML (PML)
» Nesl/GPU

» Diderot
Joint work with Gordon Kindlmann, Charisee Chiw, Lamont Samuels,
Nick Seltzer.

WG 2.8 — Diderot

Image analysis

Why image analysis is important

Imaging

Physical object Image data Computational
representation

» Scientists need software tools to extract structure from many kinds of
image data.

» Creating new analysis/visualization programs is part of the experimental
process.

» The challenge of getting knowledge from image data is getting harder.

November 2012 WG 2.8 — Diderot 4

Image analysis

Image analysis and visualization

» We are interested in a class of algorithms that compute geometric
properties of objects from imaging data.

» These algorithms compute over a continuous tensor field F (and its
derivatives), which are reconstructed from discrete data using a separable
convolution kernel /:

F=V®h

Discrete image data Continuous field

November 2012 WG 2.8 — Diderot 5

Image analysis

Image analysis and visualization

Example applications include

» Direct volume rendering (requires
reconstruction, derivatives).

November 2012 WG 2.8 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
» Direct volume rendering (requires
reconstruction, derivatives).

» Fiber tractography (requires tensor
fields).

November 2012 WG 2.8 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include
» Direct volume rendering (requires
reconstruction, derivatives).
» Fiber tractography (requires tensor
fields).
» Particle systems (requires dynamic
numbers of computational elements).

November 2012 WG 2.8 — Diderot 6

Image analysis

Image analysis and visualization

Example applications include

» Direct volume rendering (requires
reconstruction, derivatives).

» Fiber tractography (requires tensor
fields).

» Particle systems (requires dynamic
numbers of computational elements).

These applications have a common algorithmic structure: large number of
(mostly) independent computations.

November 2012 WG 2.8 — Diderot 6

Diderot

Diderot is a parallel DSL for image analysis and visualization algorithms.

Its design models the algorithmic structure of its application domain:
independent strands computing over continuous tensor fields.

A DSL approach provides

» Improve programmability by supporting a high-level mathematical
programming notation.

» Improve performance by supporting efficient execution; especially on
parallel platforms.

November 2012 WG 2.8 — Diderot 7

Diderot parallelism model

Bulk-synchronous parallel with “deterministic”” semantics.

execution
H \ step
H

global computation

- - - - -- -- - -- -
]
h : \ h strand state
_7 AN NP JR——
- : S~ -~JI__ update
die : : |
]

\
; idle
(. (. [e
read
global computation o
- il e Tl e il s
¥

strands

November 2012 WG 2.8 — Diderot

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000;
input real eps = 0.000001;

‘ Globals are immutable, and are

Tused for program inputs and other

shared globals.

// strand definition
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root) / 2.0;
if (|root”2 - vall|/val < eps)
stabilize;

}
// initialization

initially [SqgRoot (real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000;
input real eps = 0.000001;

Strands are the
elements of a bulk
synchronous

strand definition
strand SqRoot (real val)
{

output real root = val; computation.
update {
root = (root + val/root) / 2.0;
if (|root”2 - vall|/val < eps)
stabilize;

}

// initialization
initially [SqgRoot (real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000;
input real eps = 0.000001;

Strands have parameters that are
used to initialize them.

// strand definition
strand SqRoot
{

[output real root = vali

Strands have state, which

update { includes outputs.
root = (root + val/root) / 2.0;
if (|root”2 - vall|/val < eps)
stabilize;

}

// initialization
initially [SqgRoot (real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000; Strands have an update method

input real eps = 0.000001; that is invoked each super step.

// strand definition
strand SqRoot (real val)

{
output real root = val;

update {
root = (root + val/root) / 2.0;
if (|root”2 - vall|/val < eps)
stabilize;

}

// initialization
initially [SqgRoot (real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000; Strands have an update method

input real eps = 0.000001; that is invoked each super step.

// strand definition
strand SqRoot (real val)

{
output real root = val;

update {
root = (root + val/root) / 2.0;
if (|root”2 - vall|/val < eps)

Strands can stabilize or die
during the computation.

}

// initialization
initially [SqgRoot (real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot program structure

Square roots of integers using Heron’s method.

// global definitions
input int N = 1000;
input real eps = 0.000001;

The initial collection of strands is

// strand definition created using comprehension notation.
strand SqRoot (real val)
{

output real root = val;

update {
root = (root + val/root)

if (|root”2 - vall|/val
stabilize;

}

// initialization
initially [SqgRoot (real(i)) | i in 1..N]

November 2012 WG 2.8 — Diderot 9

Diderot

Programmability: from whiteboard to code

Phe=

e

s e
ol wvﬂ'”w

N
§/§§m¢nf¥’
weeg ALNT7p L

G PHP g e~ wfTr)
Hlessian rech hed
Fogr e, s T —
Fham ekt b fgei T T S o

P chige in Ve in e pare

e
=) G 5 e on N b gl
fe. Cuvvabure

= Cisavihey of G:ZKUK“D§
9 b () kka; (o, AR

WA P:}hn» g

)
5

7

(5

November 2012

vec3 grad
vec3 norm
tensor|
tensor|
tensor (3, 3]
real disc
real k1 =
real k2

-VF (pos) ;
normalize (grad);

H V ® VF (pos) ;

P = identity[3] - norm®norm;
G — (PeHeP) /|grad|;

sqrt (2.0% |G| "2 - trace(G) "2);
(trace (G) + disc)/2.0;

(trace (G) - disc)/2.0;

3,3]
3,3]

WG 2.8 — Diderot

Diderot

Example — Curvature

field#2(3)[] F = bspln3 ® image ("quad-patches.nrrd");
field#0(2) [3] RGB = tent ® image ("2d-bow.nrrd");

strand RayCast (int ui, int vi) {
update {

vec3 grad = -VF (pos);
vec3 norm normalize (grad);

tensor[3,3] H = V® VF (pos) ;
tensor([3,3] P = identity[3] - norm®norm; C1-1)
tensor[3,3] G = - (PeHeP)/|gradl;

real disc = sqgrt (2.0x|G|"2 - trace(G) "2);
real k1 = (trace(G) + disc)/2.0;
real k2 = (trace(G) - disc)/2.0;
vec3 matRGB = // material RGBA
RGB([max(-1.0, min(1.0, 6.0%kl)),
max (-1.0, min(1.0, 6.0%k2))]);

November 2012 WG 2.8 — Diderot

Example — 2D Isosurface

int stepsMax = 10;

strand sample (int ui, int vi) {
output vec2 pos = ---;
// set isovalue to closest of 50, 30, or 10
real isoval = 50.0 if F(pos) >= 40.0
else 30.0 if F(pos) >= 20.0
else 10.0;
int steps = 0;
update {
if (inside(pos, F) && steps <= stepsMax) { \
// delta = Newton-Raphson step \%Hh
vec2 delta = normalize (VF (pos)) % (F(pos) - isoval)/|VF (pos) |;

if (|deltal| < epsilon)
stabilize;

pos = pos - delta;
steps = steps + 1;
}

else die;

November 2012 WG 2.8 — Diderot 12

Fields

» Fields are functions from ¢ to tensors.
levels of continuity

field#k(d)|dy, ..., dy)

dimension of domain—"shape of range
where k > 0,d > 0, and the d; > 1.
» Diderot provides higher-order operations on fields: V, V®, etc..

» Diderot also lifts tensor operations to work on fields (e.g., +).

November 2012 WG 2.8 — Diderot 13

Implementation issues

Applying tensor fields

A field application F(x) gets compiled down into code that maps the
world-space coordinates to image space and then convolves the image values
in the neighborhood of the position.

=y

Discrete image data Continuous field

In 2D, the reconstruction is

Z Z A = D)h(ty —J)

i=l—sj=1-s

where s is the support of 2, n = |[M~'x| and f = M~ !'x — n.

Applying tensor fields (continued ...)

In general, compiling the field applications is more challenging.

For example, we might have
field#2(2)[] F = h ® V;
- Vi(s *« F) (%) ---
The first step is to normalize the field expressions.

Visx(Veh)(x) = ((V(Veh))(x)
= s ((V(V@h))(x)
= sx(V® (Vh))(x)

In the implementation, we view V as a “tensor” of partial-derivative operators

5 ?
Oy By?

2
v:[ﬁ] VoV =

o2 9%
02 Wy]

Applying tensor fields (continued ...)

Each component in the partial-derivative tensor corresponds to a component
in the result of the application.

VisxF)(x) = s*x(V® (Vh))(x)

Kl
= s*x(V® Z] h)(x)
Oy
. [S iy VInt ()] (B — i) h(Ey — j)
Doty 2ty VI ()] A(E — i) B (§ —)

A later stage of the compiler expands out the evaluations of 4 and 4’

Probing code has high arithmetic intensity and is trivial to vectorize.

Implementation issues

Normalization

» The current compiler uses “direct-style” notation when normalizing
tensor and field expressions.

» This approach does not extend to some interesting operations, such as
Vx.

» Expanding tensor operations to their scalar subcomputations is unwieldy.

» Einstein Index Notation (EIN) provides a compact representation of
tensor expressions.

» New IR operator,
AT .(e),,

whose semantics are specified by the EIN expression e, where T are
tensor parameters and « is a multi-index that determines the shape of the
result.

November 2012 WG 2.8 — Diderot 17

Implementation issues

Einstein Index Notation (continued ...)

» Concise specification of families of operators. For example,
A(u,v)(uaivig) .5 covers dot product, matrix-vector multiplication,
matrix-matrix multiplication, etc.

» Code and data-representation synthesis (need cache-friendly and
SSE-friendly mappings).

» Automatic discovery of linear-algebra identities.

November 2012 WG 2.8 — Diderot 18

Implementation issues

Optimizing tensor operations

Consider the expression t race(a®Db).

This Diderot expression is represented in the compiler as
let M = (A(u,v).(uivj>ij)(a,b)
lett= (AX.(Xu))(M)
int
substitution of the definition of M for X yields
lett= (Au,v).(uvi))(a,b)

int

November 2012 WG 2.8 — Diderot 19

Implementation issues

Optimizing tensor operations

Consider the expression t race(a®Db).

This Diderot expression is represented in the compiler as
let M = (A(u,v).(uivj>ij)(a,b)
lett= (AX.(Xu))(M)
int
substitution of the definition of M for X yields
lett= (Au,v).(uvi))(a,b)

int

Replaces a rewrite rule: Trace(Outer(u, v)) = Dot(u, v).

Related work

Other examples of parallel DSLs:
» Liszt: embedded DSL for writing mesh-based PDE solvers.

» Shadie: DSL for volume rendering applications.

» Spiral: program generator for DSP code.

Conclusion

Questions?

http://diderot-language.cs.uchicago.edu

Thanks to NVIDIA and AMD for their support.

November 2012 WG 2.8 — Diderot pal

http://diderot-language.cs.uchicago.edu

