
Lazy Functional Programming
for a survey

Norman Ramsey
Tufts

November 2012



Book: Programming languages for practitioners

Why?

◮ For people who will write code
◮ Gives future practitioners something to do

I want your help: What can they do with laziness?



Modest goals for readers

A few ideas of lasting value

◮ Embodied in “little languages”

Build, prove and compare

◮ A starting point, not mastery
◮ Motivated readers might tackle ICFP, POPL

(Intended for 3rd- or 4th-year students, young professionals)



What ideas have lasting value? Proven stuff!

Can they build something using

◮ Functions?
◮ Types?
◮ Objects?

A little operational semantics; a little type theory

Bonus: garbage collection, logic programming



µHaskell chapter is being written in a context

One common syntax (Lisp-like)

Untyped functional programming:

◮ Lists, symbols, integers
◮ Mutation discouraged
◮ First-class functions
◮ Standard higher-order funs (map, filter, foldr, curry, . . . )

Typed functional programming:

◮ The agony of System F
◮ µML, a nearly pure language with type inference
◮ Some algebraic data types



µHaskell: I want eyes to pop and heads to explode

Other outcomes:

◮ They can apply a couple of “standard” lazy tricks
◮ They want to try laziness for themselves
◮ They think maybe it’s not just a toy

Assuming they give it a week and 6–10 exercises



To motivate and introduce, I use search

Example where eager evaluation is not so good:

◮ Find square multiple of 5 greater than 137

(find-in-list

(lambda (n) (> n 137))

(filter (lambda (n) (= (mod n 5) 0))

(map square (integer-range 0 13))))

How high do you look? Is [0..13] high enough?



Mechanism: infinite lazy data structures

-> (val-rec ones (cons 1 ones))

... : int list

-> (val-rec nats (cons 0 (map ((curry +) 1) nats)))

... : int list

-> (full (take 10 nats))

(0 1 2 3 4 5 6 7 8 9) : int list



More mechanism: Incompletely evaluated list

-> (val squares (map square nats))

... : int list

-> (full (take 13 squares))

(0 1 4 9 16 25 36 49 64 81 100 121 144) : int list

-> (car (drop 19 squares))

361 : int

-> squares

(0 1 4 9 16 25 36 49 64 81 100 121

144 ... ... ... ... ... ... 361 ...) : int list



Many small examples that do something

Putting infinite sequences to work (thanks to John Hughes)

◮ Searching for numbers
◮ Square roots and cube roots (scaled integers)

-> (full (take 8 (approximate-roots 9)))

(9000 5000 3400 3023 3000 3000 3000 3000) : int list

-> (full (take 8 (approximate-roots 2)))

(2000 1500 1416 1414 1414 1414 1414 1414) : int list

◮ Multiple examples of convergence
◮ Prime numbers by trial division
◮ Backing up CDs to DVDs (bin packing)

Speedup via memoization

◮ Naive Fibonacci



Medium-sized example: Boolean satisfiability

They’ve done it in an eager language by passing continuations

Two new approaches that rely on laziness

◮ (filter ((curry satisfied-by?) formula)

(all-assignments formula))

◮ Backtracking search á la “Replace failure by a list of
successes”

(Neither approach dominates!)



Integrative example: Paragraphs into lines

But, in a larger sense, we can not dedicate, we can not

consecrate, we can not hallow this ground. The brave men,

living and dead, who struggled here, have consecrated it,

far above our poor power to add or detract. The world will

little note, nor long remember what we say here, but it can

never forget what they did here. It is for us the living,

rather, to be dedicated here to the unfinished work which

they who fought here have thus far so nobly advanced. It is

rather for us to be here dedicated to the great task

remaining before us --- that from these honored dead we take

increased devotion to that cause for which they gave the

last full measure of devotion --- that we here highly

resolve that these dead shall not have died in vain --- that

this nation, under God, shall have a new birth of freedom

--- and that government of the people, by the people, for

the people, shall not perish from the earth.

Greedy

But, in a larger sense, we can not dedicate, we can not

consecrate, we can not hallow this ground. The brave men,

living and dead, who struggled here, have consecrated it,

far above our poor power to add or detract. The world will

little note, nor long remember what we say here, but it can

never forget what they did here. It is for us the living,

rather, to be dedicated here to the unfinished work which

they who fought here have thus far so nobly advanced. It

is rather for us to be here dedicated to the great task

remaining before us --- that from these honored dead we

take increased devotion to that cause for which they gave

the last full measure of devotion --- that we here highly

resolve that these dead shall not have died in vain --- that

this nation, under God, shall have a new birth of freedom

--- and that government of the people, by the people, for

the people, shall not perish from the earth.

Knuth-Plass

(Both sides monospaced)



Knuth-Plass on a simple paragraph

Input: “The dog ate my code oh yes he did.”

Output for 7 columns, shrink 1, stretch 2:

The dog

ate my

code oh

yes he

did.

“Best” breaks and their costs:

•

0 The 656100
• dog

•

100ate 656200
• my

•

584code 120993
• oh

•

684yes 121477
• he

•

1168did. 1268
•



Core of solution uses a mutually recursive nest

•

0 The 656100
• dog

•

100ate 656200
• my

•

584code 120993
• oh

•

684yes 121477
• he

•

1168did. 1268
•

Best breakpoint computed using

ordinary-badness, last-badness: word list -> badness

best-ordinary : word list -> break

= (best ordinary-badness)

candidate-lines : word list -> (break * word list) list

best : (word list -> badness) -> word list -> break



Memoization makes it practical

•

0 The 656100
• dog

•

100ate 656200
• my

•

584code 120993
• oh

•

684yes 121477
• he

•

1168did. 1268
•

Insert memo list into recursion:

best-ordinary : word list -> break

= (lambda (ws) (... memo ... ws ...))

One changed definition

candidate-lines : word list -> (break * word list) list

best : (word list -> badness) -> word list -> break

One new definition
memo : break list

= (map (best badness) (tails words))



Laziness + Memoization = Gettysburg Address

Four score and seven years ago our fathers brought forth on

this continent a new nation, conceived in liberty, and

dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether

that nation, or any nation, so conceived and so dedicated,

can long endure. We are met on a great battle-field of that

war. We have come to dedicate a portion of that field, as a

final resting place for those who here gave their lives that

that nation might live. It is altogether fitting and proper

that we should do this.

But, in a larger sense, we can not dedicate, we can not

consecrate, we can not hallow this ground. The brave men,

living and dead, who struggled here, have consecrated it,

far above our poor power to add or detract. The world will

little note, nor long remember what we say here, but it can

never forget what they did here. It is for us the living,

rather, to be dedicated here to the unfinished work which

they who fought here have thus far so nobly advanced. It is

rather for us to be here dedicated to the great task

remaining before us --- that from these honored dead we take

increased devotion to that cause for which they gave the

last full measure of devotion --- that we here highly

resolve that these dead shall not have died in vain --- that

this nation, under God, shall have a new birth of freedom

--- and that government of the people, by the people, for

the people, shall not perish from the earth.

Greedy

Four score and seven years ago our fathers brought forth

on this continent a new nation, conceived in liberty, and

dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether

that nation, or any nation, so conceived and so dedicated,

can long endure. We are met on a great battle-field of that

war. We have come to dedicate a portion of that field, as

a final resting place for those who here gave their lives

that that nation might live. It is altogether fitting and

proper that we should do this.

But, in a larger sense, we can not dedicate, we can not

consecrate, we can not hallow this ground. The brave men,

living and dead, who struggled here, have consecrated it,

far above our poor power to add or detract. The world will

little note, nor long remember what we say here, but it can

never forget what they did here. It is for us the living,

rather, to be dedicated here to the unfinished work which

they who fought here have thus far so nobly advanced. It

is rather for us to be here dedicated to the great task

remaining before us --- that from these honored dead we

take increased devotion to that cause for which they gave

the last full measure of devotion --- that we here highly

resolve that these dead shall not have died in vain --- that

this nation, under God, shall have a new birth of freedom

--- and that government of the people, by the people, for

the people, shall not perish from the earth.

Knuth-Plass



I like some of this

Three things people can do

◮ Have fun with infinite lists
◮ Write search using modular generate and test
◮ Memoize

Two things people can gawk at

◮ Clean dynamic programming
◮ Line breaking



Some things concern me

◮ Who cares about sequences of numbers?
◮ Line breaking may be too big a leap
◮ Not enough good exercises!



Two questions you can answer

If you’ve learned a little lazy functional programming,

◮ What do you know?
◮ What can you do?



Randomized improvement of greedy algorithms

“Bubble search” concept from Lesh and Mitzenmacher

bubbleSearch

:: (result -> result -> Ordering) -- quality

-> ([a] -> result) -- greedy search algorithm

-> Double -- biased coin

-> [a] -- items to be searched

-> Random [result] -- monadic, monotone results

(E.g., type a is a CD and result is a packing of DVDs.)



Some ideas for exercises

Smallest prime at least 1000 and contains a 7

Memoization combinators?

Bubble search (higher-order improvement for greedy
algorithms)

Stupid line-breaking tricks

Add lazy streams to an eager language



µHaskell concrete syntax is small

Definition forms:

◮ val, val-rec, define, datatype definition
◮ top-level expression

Expression forms:

◮ literal, variable, application, λ-abstraction
◮ let-binding (let, let*, letrec)
◮ if

◮ non-nested case (datatype elimination, forcing)



Numerical example: square root (thanks RJMH)
√

n approximations: xi+1 = 1
2(xi + n/xi)

(define approximate-roots (n) ;;; on SCALED integers

(letrec ((n# (scale n))

(roots-from (lambda (x_i)

(let ((x_{i+1} (/ (+s x_i (/s n# x_i)) 2)))

(cons x_i (roots-from x_{i+1}))))))

(roots-from n#)))

Transcript:

-> (val three (approximate-roots 9))

... : int list

-> (full (take 8 three))

(9000 5000 3400 3023 3000 3000 3000 3000) : int list

-> (full (take 8 (approximate-roots 2)))

(2000 1500 1416 1414 1414 1414 1414 1414) : int list


