
Inheritance Is Subtyping

Robert Cartwright

1 Rice University

Houston, Texas U.S.A.

cork@rice.edu
2 Halmstad University

Halmstad, Sweden

robert.cartwright@hh.se

Extended Abstract

Since Luca Cardelli wrote a seminal paper [1] on the semantics of inheritance in 1984, program-

ming language researchers have constructed a variety of structural models of object-oriented

programming (OOP) founded on Cardelli’s work. Since Cardelli approached OOP from the

perspective of functional programming, he identified inheritance with record subtyping—an el-

egant choice in this context. Although Cardelli did not formally define inheritance, he equated

it with record subtyping and proved that for a small functional language with records, variants,

and function types–but no recursive record types–that syntactic and semantic record subtyping

were equivalent. William Cook et al [2] subsequently added recursive record types, including

a more accurate typing for this in methods, and reached a profoundly different conclusion:

inheritance is not subtyping.

Meanwhile, object-oriented (OO) program design emerged as an active area of research

within software engineering, spawning class-based OO languages like C++, Java, and C#,

which strictly define inheritance in terms of class hierarchies. In these languages, subtyping is

identified with inheritance. In contrast to Cardelli’s expansive formulation of inheritance based

solely on record interfaces (sets of member-name interface pairs)1, these languages define the

type associated with a class C as the set of all instances of C and all instances of explicitly

declared subclasses of C. Simply matching the signatures of the members of C is insufficient.

In Cardelli’s semantics and its successors based on functional programming models, the

meaning of a class only depends on the members of the class (including inherited members),

not on the inheritance hierarchy used to define the class. This paper presents a new approach to

defining the semantics of OO languages that embeds in each object the signature of the inher-

itance hierarchy above it. In contrast to record-based semantics, our new approach completely

reconciles inheritance and subtyping among classes: a class B is a subtype of a class A iff B

inherits from A.

Since antiquity, mathematicians have implicity used types in describing mathematical con-

structions. In describing functions and other constructions, mathematicians typically designate

1Since Cardelli excluded recursive types, every interface in his language can be expressed purely in terms of

type constructors applied to primitive types.

1



the sets (types) to which variables are presumed to belong. In addition, they usually indicate

the set to which the output of a function or construction belongs. For example, the formula for

the volume of a sphere (a function of the radius), the radius is presumed to be a real number

and the volume output is also a real number. Of course, some functions like the identity func-

tion and the equality function are applicable to arbitrary mathematical objects. More recently,

logicians and computer scientists have been concerned with defining families of similar objects

(types) and precisely characterizing the input and output types of functions. For example, a

higher-order function twice that that takes a unary function f as an argument and composes f

with itself accepts all functions of type T -> T for some T and returns a function of the same

type

In simple, statically-typed functional languages based on the simply typed lambda-calculus,

the issue of subtyping does not arise: every data value belongs to a unique type. Even when

such a language is generalized to support parametric polymorphism [5], every value belongs to

a unique monotype (unquantified type).

Object-oriented languages introduce the idea that composite values (often called records

or structures in functional languages) can belong to multiple monotypes. For example, a

ColorPoint object with fields x: Number, y: Number, and color: Color can have type

type Point which omits the color field as well as type ColorPoint. In structural OO lan-

guages, object types are based simply on the interfaces of objects: the names and types of

their visible record fields. Hence, ColorPoint is a subtype of Point even when it is sepa-

rately defined without use of inheritance. In nominal OO languages, object types are based

strictly on the inheritance structure specified in the program: the type associated with class

B is a subtype of the type associated with class A iff the definition of B explicitly inher-

its from the definition of A. If object values do not include inheritance information, this re-

stricted definition of subtyping appears capricious. But OO software developers think of an

object in the context of its class hierarchy and the contracts associated with its class mem-

bers, which are inherited along with the corresponding class members. For example, in Java,

DefaultPlainDocument and DefaultStyledDocument are two different specializations of the

abstract class AbstractDocument but they share the common behavior (contracts) associated

with AbstractDocument.

In mainstream OO design, subtyping conforms to the Liskov substitution principle [4]: types

are characterized by behavioral contracts and every subtype B of a type A obeys the contracts

of the parent type A. A subtype can augment the contracts inherited from its parent type, but

the inherited contracts still apply as well. Of course, no decidable type system can fully capture

program behavior since any non-trivial aspect of program behavior is undecidable. In practice,

a decidable type system should perform static checks that help the programmers confirm that

their code obeys the Liskov substitution principle.

In nominal OO languages like Java and C#, the static type system identifies subtyping with

inheritance: the type corresponding to class C consists of all instances of C and all subclasses

of C. Hence, a the type for class B is a subtype of the type for class A iff B inherits from A. In

2



writing the code for a subclass, the programmer is responsible for confirming that instances of

the class conform to the contracts for all superclasses. The preservation of such contracts is a

pillar of good OO design. For this reason, the signature of an overriding method typically must

exactly match the signature of the overridden method.

According to folklore among programming language researchers, the identification of sub-

typing and inheritance in mainstream OO languages like Java and C# is misguided, despite

the fact that simple versions of these type systems have been proved sound [3] relative to oper-

ational semantics for these languages. This paper presents a denotational model of OOP akin

to Cardelli’s record model that justifies the typing conventions in mainstream OO languages

and breaks typing rules based on record subtyping. In other words, given what we believe is

a proper model of mainstream nominal OOP, subtyping is inheritance and the usual structural

typing rules are unsound.

References

[1] Luca Cardelli. A semantics of multiple inheritance. In Proc. of the international symposium on

Semantics of data types, pages 51–67, New York, NY, USA, 1984. Springer-Verlag New York, Inc.

[2] William R. Cook, Walter Hill, and Peter S. Canning. Inheritance is not subtyping. In Proceedings

of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL

’90, pages 125–135, New York, NY, USA, 1990. ACM.

[3] Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is the java type system sound?

Theor. Pract. Object Syst., 5(1):3–24, January 1999.

[4] Barbara H. Liskov and Jeanette M. Wing. A behavioral notion of subtyping. ACM Transactions

on Programming Languages and Systems, 16:1811–1841, 1994.

[5] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17:348–375, 1978.

3


