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Project goal

Make it possible to hire median-quality programmers to
build secure systems.
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What is DIFC?

?
• IFC originated with military applications and classified data

• Every piece of data in the system has a label

• Every process/thread has a label

• Labels are partially ordered by v (”can flow to”)
• Example: Emacs (labeled LE) accesses file (labeled LF)

- File read? Information flows from file to emacs. System requires LF v LE.
- File write? Information flows in both directions. System enforces that

LF v LE and LE v LF.
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What is DIFC?

WRITE

• IFC originated with military applications and classified data

• Every piece of data in the system has a label

• Every process/thread has a label

• Labels are partially ordered by v (”can flow to”)
• Example: Emacs (labeled LE) accesses file (labeled LF)

- File read? Information flows from file to emacs. System requires LF v LE.
- File write? Information flows in both directions. System enforces that

LF v LE and LE v LF.
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Labels are transitive

InternetX

• v is a transitive relation
- Transitivity makes it easier to reason about security

• Example: Label file so it cannot flow to Internet: LF 6v Lnet

- Policy holds regardless of what other software does

• Suppose a buggy app reads file (e.g., desktop search)
- Process labeled Lbug reads file, so must have LF v Lbug

- But since LF 6v Lnet, it must be the case that LF v Lbug 6v Lnet

• Conversely, if app write to network have LF 6v Lbug v Lnet
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Labels form a lattice

• Consider two users, A and B
- Label public data L∅, A’s private data LA, B’s private data LB

• What if you mix A’s and B’s private data in a single document?
- Both A and B should be concerned about the release of such a document
- Need a label at least as restrictive as both LA and LB

- Use the least upper bound (a.k.a. lub or join) of LA and LB, written LA t LB
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DIFC is Decentralized

Internet

Sanitize

• Different software has access to different privileges
• Exercising privilege p changes label requirements

- vp (“can flow under privileges p”) is more permissive than v
- LF vp Lproc to read, and additionally Lproc vp LF to write file

• Idea: Set labels so you know who has relevant privs
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Example privileges

• Consider again simple two user lattice
• Let a be user A’s privileges, b be user B’s privileges
• Clearly LA va L∅ and LB vb L∅

- Users should be able to make public or declassify their own private data
• Users should also be able to partially declassify data

- I.e., LAB va LB and LAB vb LA

7 / 20



Example privileges

Equivalent
under

Equivalent
under

• Consider again simple two user lattice
• Let a be user A’s privileges, b be user B’s privileges
• Clearly LA va L∅ and LB vb L∅

- Users should be able to make public or declassify their own private data
• Users should also be able to partially declassify data

- I.e., LAB va LB and LAB vb LA

7 / 20



Labels in Haskell
• Represent as type class to accommodate various lattices

class (Eq l, Show l, Typeable l) => Label l where

lub :: l -> l -> l -- Least upper bound

glb :: l -> l -> l -- Greatest lower bound

canFlowTo :: l -> l -> Bool -- "Can flow to" partial order

(v) = canFlowTo

• We use DC labels, pairs of CNF formulas over principals
secrecy component︷ ︸︸ ︷

reader-condition %%

integrity component︷ ︸︸ ︷
writer-condition

- Example: ("A" \/ "B") %% "X" /\ ("A" \/ "B")

A or B can read; one of A’s or B’s permissions plus X’s required to write
- Mixing data increases secrecy, decreases integrity

(S1 %% I1) t (S2 %% I2) = (S1 ∧ S2 %% I1 ∨ I2)

- Data can only flow to less secrecy or more integrity (⇒ is “implies”)

(S1 %% I1) v (S2 %% I2) iff (S1 ⇒ S2) ∧ (I2 ⇒ I1)
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Enforcing IFC
• Supply a “Labeled IO” monad LIO to be used in place of IO

{-# LANGUAGE Unsafe #-}
data LIOState l = LIOState { lioLabel, lioClearance :: !l }

newtype LIO l a = LIOTCB (IORef (LIOState l) -> IO a)

instance Monad (LIO l) where

return = LIOTCB . const . return
(LIOTCB ma) >>= k = LIOTCB $ \s -> do

a <- ma s

case k a of LIOTCB mb -> mb s

ioTCB :: IO a -> LIO l a -- back door for privileged code

ioTCB = LIOTCB . const -- to execute arbitrary IO actions

• Note: constructor LIOTCB not exported to safe code
- Idea: Start with no side effects possible in safe LIO code
- Build up library of label-respecting side effects in trustworthy code
- By convention, all privileged, unsafe symbols end . . . TCB
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Adjusting and checking labels

• Privileged code must check labels before impure actions

• Before reading object obj, must ensure Lobj v Lthread

taint :: Label l => l -> LIO l ()

taint lobj = do

LIOState { lioLabel = l, lioClearance = c } <- getLIOStateTCB

let l’ = l t lobj

unless (l’ v c) $ labelError "taint" [lobj]

modifyLIOStateTCB $ \s -> s { lioLabel = l’ }

• Before writing, must check Lthread v Lobj v Cthread

guardWrite :: Label l => l -> LIO l ()

guardWrite lobj = do

LIOState { lioLabel = l, lioClearance = c } <- getLIOStateTCB

unless (l v lobj) $ labelError "guardWrite" [newl]

taint lobj
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Representing privileges
• Privilege type p describes pre-orders vp on labels of type l

class (Label l) => PrivDesc l p where

downgradeP :: p -> l -> l -- get least equivalent label under vp
canFlowToP :: p -> l -> l -> Bool

canFlowToP p l1 l2 = downgradeP p l1 v l2

• DC label privileges are just CNF formulas, so that

(S1 %% I1) vp (S2 %% I2) iff (p∧ S1 ⇒ S2) ∧ (p∧ I2 ⇒ I1)

• Note a PrivDesc instance merely describes privileges
- To exercise them, must wrap them in type Priv

newtype Priv p = PrivTCB p

- Safe code cannot import unsafe PrivTCB symbol
- But can bootstrap privileges in IO monad before entering LIO

privInit :: p -> IO (Priv p)

privInit p = return $ PrivTCB p
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Using Priv objects

• For convenience, Privs are also PrivDescs

instance (PrivDesc l p) => PrivDesc l (Priv p) where

downgradeP (PrivTCB p) = downgradeP p

canFlowToP (PrivTCB p) = canFlowToP p

• Most functions have . . . P variants taking a Priv argument, e.g.:

taintP :: PrivDesc l p => Priv p -> l -> LIO l ()

taintP p lobj_high = do

... Same basic body as taint ...

where lobj = downgradeP p lobj_high

(v)= canFlowToP p

• Can use one Priv object to obtain weaker ones it speaks for

delegate :: (SpeaksFor p) => Priv p -> p -> Priv p

delegate start_privs wanted_privs = ...

- With DC labels: p1 speaks for p2 iff p1 ⇒ p2
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Example: Rock-Paper-Scissors server
• Allow untrusted third parties to improve/translate game

• Third-party code should not be able to cheat (look at
opponent’s move before playing) or report scissors to tsa.gov

• Approach:
- Give privileges “server” to main server loop
- Delegates sub-privileges to each player, e.g., “(player1 \/ server)”, . . .
- Use appropriately labeled MVars to record each player’s move

• Lattice:

True %% True

player1 \/ server%% True player2 \/ server %% True

(player1 /\ player2) \/ server %% True

"tsa.gov" %% True
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Demo time

Get the code!

git clone http://tinyurl.com/liorock-git

cabal install --haddock-hyperlink-source lio
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Hails: An LIO web framework

• Introduces Model-Policy-View-Controller paradigm

• A Hails server comprises two types of software packages
- VCs contain view and controller logic
- MPs contain model and policy logic

• Policies enforced using LIO
- Also isolate spawned programs with Linux namespaces

• Used for several web sites. . .
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GitStar

• Public GitHub-like service supporting private projects
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Simplified GitStar architecture
Code Viewer

S
e
rv

e
rView

Controller

View

Controller

View

Controller

Git-Blog

S
e
rv

e
r View

Controller

View

Controller

View

Controller

Bookmark

S
e
rv

e
r View

Controller

View

Controller

View

Controller

FollowerGitStar

DBI DBI

ViewView

ControllerControllerPolicy

Model

Browser

Splint

ViewView

ControllerControllerPolicy

Model

• Two MPs: GitStar hosts git repos, Follower stores a
relationship between users

• Three different VC apps make use of these MPs
- VCs can be written after the fact w/o permission of MP author
- LIO ensures they cannot mis-use data
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What policy looks like

-- Set policy for "users" collection:

collection "users" $ do

-- Set collection label:

access $ do

readers ==> anybody

writers ==> anybody

-- Declare user field as a key:

field "user" key

-- Set document label, given document doc:

document $ \doc -> do

readers ==> anybody

writers ==> ("user" ‘from‘ doc) \/ _Follower

-- Set email field label, given document doc:

field "email" $ labeled $ \doc -> do

readers ==> ("user" ‘from‘ doc)

\/ fromList ("friends" ‘from‘ doc)

\/ _Follower

writers ==> anybody

user: alice

friends: bob, joe,...

email: alice@...

Document:

DocumentCollectionLabeled by: Field

,

,

,

,
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LearnByHacking
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LearnByHacking
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Questions

Secure

Computer

Systems

http://www.scs.stanford.edu/

git clone http://tinyurl.com/liorock-git
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