
Decentralized Information Flow
Control with the LIO library

Pablo Buiras, Amit Levy, David Mazières, John Mitchell,
Alejandro Russo, Deian Stefan, David Terei, and Edward Yang

Stanford and Chalmers

October 18, 2013



Project goal

Make it possible to hire median-quality programmers to
build secure systems.

2 / 20



What is DIFC?

?
• IFC originated with military applications and classified data

• Every piece of data in the system has a label

• Every process/thread has a label

• Labels are partially ordered by v (”can flow to”)
• Example: Emacs (labeled LE) accesses file (labeled LF)

- File read? Information flows from file to emacs. System requires LF v LE.
- File write? Information flows in both directions. System enforces that

LF v LE and LE v LF.

3 / 20



What is DIFC?

READ

• IFC originated with military applications and classified data

• Every piece of data in the system has a label

• Every process/thread has a label

• Labels are partially ordered by v (”can flow to”)
• Example: Emacs (labeled LE) accesses file (labeled LF)

- File read? Information flows from file to emacs. System requires LF v LE.

- File write? Information flows in both directions. System enforces that
LF v LE and LE v LF.

3 / 20



What is DIFC?

WRITE

• IFC originated with military applications and classified data

• Every piece of data in the system has a label

• Every process/thread has a label

• Labels are partially ordered by v (”can flow to”)
• Example: Emacs (labeled LE) accesses file (labeled LF)

- File read? Information flows from file to emacs. System requires LF v LE.
- File write? Information flows in both directions. System enforces that

LF v LE and LE v LF.

3 / 20



Labels are transitive

InternetX

• v is a transitive relation
- Transitivity makes it easier to reason about security

• Example: Label file so it cannot flow to Internet: LF 6v Lnet

- Policy holds regardless of what other software does

• Suppose a buggy app reads file (e.g., desktop search)
- Process labeled Lbug reads file, so must have LF v Lbug

- But since LF 6v Lnet, it must be the case that LF v Lbug 6v Lnet

• Conversely, if app write to network have LF 6v Lbug v Lnet

4 / 20



Labels are transitive

Internet

• v is a transitive relation
- Transitivity makes it easier to reason about security

• Example: Label file so it cannot flow to Internet: LF 6v Lnet

- Policy holds regardless of what other software does

• Suppose a buggy app reads file (e.g., desktop search)

- Process labeled Lbug reads file, so must have LF v Lbug

- But since LF 6v Lnet, it must be the case that LF v Lbug 6v Lnet

• Conversely, if app write to network have LF 6v Lbug v Lnet

4 / 20



Labels are transitive

InternetX

• v is a transitive relation
- Transitivity makes it easier to reason about security

• Example: Label file so it cannot flow to Internet: LF 6v Lnet

- Policy holds regardless of what other software does

• Suppose a buggy app reads file (e.g., desktop search)
- Process labeled Lbug reads file, so must have LF v Lbug

- But since LF 6v Lnet, it must be the case that LF v Lbug 6v Lnet

• Conversely, if app write to network have LF 6v Lbug v Lnet

4 / 20



Labels are transitive

InternetX

• v is a transitive relation
- Transitivity makes it easier to reason about security

• Example: Label file so it cannot flow to Internet: LF 6v Lnet

- Policy holds regardless of what other software does

• Suppose a buggy app reads file (e.g., desktop search)
- Process labeled Lbug reads file, so must have LF v Lbug

- But since LF 6v Lnet, it must be the case that LF v Lbug 6v Lnet

• Conversely, if app write to network have LF 6v Lbug v Lnet

4 / 20



Labels form a lattice

• Consider two users, A and B
- Label public data L∅, A’s private data LA, B’s private data LB

• What if you mix A’s and B’s private data in a single document?
- Both A and B should be concerned about the release of such a document
- Need a label at least as restrictive as both LA and LB

- Use the least upper bound (a.k.a. lub or join) of LA and LB, written LA t LB

5 / 20



DIFC is Decentralized

Internet

Sanitize

• Different software has access to different privileges
• Exercising privilege p changes label requirements

- vp (“can flow under privileges p”) is more permissive than v
- LF vp Lproc to read, and additionally Lproc vp LF to write file

• Idea: Set labels so you know who has relevant privs

6 / 20



Example privileges

• Consider again simple two user lattice
• Let a be user A’s privileges, b be user B’s privileges
• Clearly LA va L∅ and LB vb L∅

- Users should be able to make public or declassify their own private data
• Users should also be able to partially declassify data

- I.e., LAB va LB and LAB vb LA

7 / 20



Example privileges

Equivalent
under

Equivalent
under

• Consider again simple two user lattice
• Let a be user A’s privileges, b be user B’s privileges
• Clearly LA va L∅ and LB vb L∅

- Users should be able to make public or declassify their own private data
• Users should also be able to partially declassify data

- I.e., LAB va LB and LAB vb LA

7 / 20



Labels in Haskell
• Represent as type class to accommodate various lattices

class (Eq l, Show l, Typeable l) => Label l where

lub :: l -> l -> l -- Least upper bound

glb :: l -> l -> l -- Greatest lower bound

canFlowTo :: l -> l -> Bool -- "Can flow to" partial order

(v) = canFlowTo

• We use DC labels, pairs of CNF formulas over principals
secrecy component︷ ︸︸ ︷

reader-condition %%

integrity component︷ ︸︸ ︷
writer-condition

- Example: ("A" \/ "B") %% "X" /\ ("A" \/ "B")

A or B can read; one of A’s or B’s permissions plus X’s required to write
- Mixing data increases secrecy, decreases integrity

(S1 %% I1) t (S2 %% I2) = (S1 ∧ S2 %% I1 ∨ I2)

- Data can only flow to less secrecy or more integrity (⇒ is “implies”)

(S1 %% I1) v (S2 %% I2) iff (S1 ⇒ S2) ∧ (I2 ⇒ I1)

8 / 20



Enforcing IFC
• Supply a “Labeled IO” monad LIO to be used in place of IO

{-# LANGUAGE Unsafe #-}
data LIOState l = LIOState { lioLabel, lioClearance :: !l }

newtype LIO l a = LIOTCB (IORef (LIOState l) -> IO a)

instance Monad (LIO l) where

return = LIOTCB . const . return
(LIOTCB ma) >>= k = LIOTCB $ \s -> do

a <- ma s

case k a of LIOTCB mb -> mb s

ioTCB :: IO a -> LIO l a -- back door for privileged code

ioTCB = LIOTCB . const -- to execute arbitrary IO actions

• Note: constructor LIOTCB not exported to safe code
- Idea: Start with no side effects possible in safe LIO code
- Build up library of label-respecting side effects in trustworthy code
- By convention, all privileged, unsafe symbols end . . . TCB

9 / 20



Adjusting and checking labels

• Privileged code must check labels before impure actions

• Before reading object obj, must ensure Lobj v Lthread

taint :: Label l => l -> LIO l ()

taint lobj = do

LIOState { lioLabel = l, lioClearance = c } <- getLIOStateTCB

let l’ = l t lobj

unless (l’ v c) $ labelError "taint" [lobj]

modifyLIOStateTCB $ \s -> s { lioLabel = l’ }

• Before writing, must check Lthread v Lobj v Cthread

guardWrite :: Label l => l -> LIO l ()

guardWrite lobj = do

LIOState { lioLabel = l, lioClearance = c } <- getLIOStateTCB

unless (l v lobj) $ labelError "guardWrite" [newl]

taint lobj

10 / 20



Representing privileges
• Privilege type p describes pre-orders vp on labels of type l

class (Label l) => PrivDesc l p where

downgradeP :: p -> l -> l -- get least equivalent label under vp
canFlowToP :: p -> l -> l -> Bool

canFlowToP p l1 l2 = downgradeP p l1 v l2

• DC label privileges are just CNF formulas, so that

(S1 %% I1) vp (S2 %% I2) iff (p∧ S1 ⇒ S2) ∧ (p∧ I2 ⇒ I1)

• Note a PrivDesc instance merely describes privileges
- To exercise them, must wrap them in type Priv

newtype Priv p = PrivTCB p

- Safe code cannot import unsafe PrivTCB symbol
- But can bootstrap privileges in IO monad before entering LIO

privInit :: p -> IO (Priv p)

privInit p = return $ PrivTCB p

11 / 20



Using Priv objects

• For convenience, Privs are also PrivDescs

instance (PrivDesc l p) => PrivDesc l (Priv p) where

downgradeP (PrivTCB p) = downgradeP p

canFlowToP (PrivTCB p) = canFlowToP p

• Most functions have . . . P variants taking a Priv argument, e.g.:

taintP :: PrivDesc l p => Priv p -> l -> LIO l ()

taintP p lobj_high = do

... Same basic body as taint ...

where lobj = downgradeP p lobj_high

(v)= canFlowToP p

• Can use one Priv object to obtain weaker ones it speaks for

delegate :: (SpeaksFor p) => Priv p -> p -> Priv p

delegate start_privs wanted_privs = ...

- With DC labels: p1 speaks for p2 iff p1 ⇒ p2

12 / 20



Example: Rock-Paper-Scissors server
• Allow untrusted third parties to improve/translate game

• Third-party code should not be able to cheat (look at
opponent’s move before playing) or report scissors to tsa.gov

• Approach:
- Give privileges “server” to main server loop
- Delegates sub-privileges to each player, e.g., “(player1 \/ server)”, . . .
- Use appropriately labeled MVars to record each player’s move

• Lattice:

True %% True

player1 \/ server%% True player2 \/ server %% True

(player1 /\ player2) \/ server %% True

"tsa.gov" %% True

13 / 20



Demo time

Get the code!

git clone http://tinyurl.com/liorock-git

cabal install --haddock-hyperlink-source lio

14 / 20



Hails: An LIO web framework

• Introduces Model-Policy-View-Controller paradigm

• A Hails server comprises two types of software packages
- VCs contain view and controller logic
- MPs contain model and policy logic

• Policies enforced using LIO
- Also isolate spawned programs with Linux namespaces

• Used for several web sites. . .

15 / 20



GitStar

• Public GitHub-like service supporting private projects
16 / 20



Simplified GitStar architecture
Code Viewer

S
e
rv

e
rView

Controller

View

Controller

View

Controller

Git-Blog

S
e
rv

e
r View

Controller

View

Controller

View

Controller

Bookmark

S
e
rv

e
r View

Controller

View

Controller

View

Controller

FollowerGitStar

DBI DBI

ViewView

ControllerControllerPolicy

Model

Browser

Splint

ViewView

ControllerControllerPolicy

Model

• Two MPs: GitStar hosts git repos, Follower stores a
relationship between users

• Three different VC apps make use of these MPs
- VCs can be written after the fact w/o permission of MP author
- LIO ensures they cannot mis-use data

17 / 20



What policy looks like

-- Set policy for "users" collection:

collection "users" $ do

-- Set collection label:

access $ do

readers ==> anybody

writers ==> anybody

-- Declare user field as a key:

field "user" key

-- Set document label, given document doc:

document $ \doc -> do

readers ==> anybody

writers ==> ("user" ‘from‘ doc) \/ _Follower

-- Set email field label, given document doc:

field "email" $ labeled $ \doc -> do

readers ==> ("user" ‘from‘ doc)

\/ fromList ("friends" ‘from‘ doc)

\/ _Follower

writers ==> anybody

user: alice

friends: bob, joe,...

email: alice@...

Document:

DocumentCollectionLabeled by: Field

,

,

,

,

18 / 20



LearnByHacking

19 / 20



LearnByHacking

19 / 20



Questions

Secure

Computer

Systems

http://www.scs.stanford.edu/

git clone http://tinyurl.com/liorock-git

20 / 20


