
Compiling stream processors for software-based
low-latency network processing

Gordon Stewart (Princeton), Mahanth Gowda (UIUC),
Geoff Mainland (Drexel), Bozidar Radunovic (MSR),

Dimitrios Vytiniotis (MSR)

Wireless programming

for hardware dummies

Motivation

 Lots of innovation in PHY/MAC design

 Popular experimental platform: GnuRadio
 Easy to program but slow, no real network deployment

 Modern wireless PHYs require high-rate DSP

 Real-time platforms (SORA, Warp, …)
 Achieve protocol processing requirements, difficult to program, no code

portability (lots of manual hand-tuning)

2

Issues for wireless researchers

 SMP platforms (e.g. SORA)
 Manual vectorization, CPU placement

 Cache optimizations

 FPGA platforms (e.g. Warp)
 Latency-sensitive design, difficult for new CS students/researchers to break into

 Portability/readability
 (Manually) highly optimized code is difficult to read and maintain

 Practically impossible to target another platform

3

Difficulty in writing and

reusing code hampers

innovation

Our goal

 New wireless programming platform
1. Code written in a high-level language

2. Compiler deals with low-level code optimization

3. Same code compiles on different platforms (not there just yet!)

 Challenges
1. Design PL abstractions that are intuitive and expressive

2. Design efficient compilation schemes (to multiple platforms)

 What is special about wireless
1. … that affects abstractions: large degree of separation b/w data and control

2. … that affects compilation: need low latency stream processing

4

Related works

 SMP: SORA bricks (MSRA), GnuRadio blocks
 Language extension (templates) and lots of libraries

 FPGA: Airblue
 Programmer deals with hardware low-level stuff (sync, queues, etc)

 Control and data separation: CodiPhy, OpenRadio (Stanford)

 Streaming languages: StreamIt (MIT)

 Functional reactive programming: e.g. Yampa (Yale), Fran

 Dataflow languages e.g. Lucid (but no clocks here)

5

WPL: A 2-layer design

 Lower-level
 Imperative C-like code for manipulating bits, bytes, arrays etc.

 Higher-level:
 A monadic language for specifying and staging stream processors

 Enforces clean separation between control and data flow

 Runtime implements low-level execution model
 Inspired by stream fusion in Haskell

 Provides efficient sequential and pipeline-parallel executions

 Monadic stream language enables aggressive compiler
optimizations

6

Dataflow streaming abstractions

7

Predominant abstraction today (e.g. SORA, StreamIt,
GnuRadio) is that of a “vertex” in a dataflow graph

 Reasonable as abstraction of the execution model

 Unsatisfactory as programming and compilation model

stream transformer t,

of type:

ST T a b

Control-aware streaming abstractions

8

t

inStream (a)

outStream (b)

c

inStream (a)

outStream (b)

outControl (v)

stream computer c,

of type:

ST (C v) a b

Control-aware streaming abstractions

9

t

inStream (a)

outStream (b)

c

inStream (a)

outStream (b)

outControl (v)

take :: ST (C a) a b
emit :: v -> ST (C ()) a v

Horizontal and vertical composition

(>>>) :: ST T a b -> ST T b c -> ST T a c

(>>>) :: ST (C v) a b -> ST T b c -> ST (C v) a c

(>>>) :: ST T a b -> ST (C v) b c -> ST (C v) a c

10

(>>=) :: ST (C v) a b -> (v -> ST x a b) -> ST x a b

return :: v -> ST (C v) a b

Staging a pipeline, in diagrams

11

c1

t1

t2

t3

C T

Simple example: scrambler

12

WiFi receiver (simplified)

13

removeDC

Detect

Carrier

Channel

Estimation

Invert

Channel

Packet

start
Channel

info

Decode

Header

Invert

Channel

Decode

Packet

Packet

info

Semantics Execution model (SMP)

14

Every component (ST (C v) a b) “compiles” to 2
functions:

tick : Void → (Result v a b + NeedInput)

process : a → Result v a b

Result v a b = Skip | Yield b | Done v

NeedInput = ()

state and our execution model

reflects that

Execution model (continued)

15

Runtime loop:

1: Let t = top-level-component

2: whatis := t.tick()

3: if whatis == Yield b

then putBuf(b) ; goto 2

else if whatis == Skip then goto 2

else if whatis == Done then exit()

else if whatis == NeedInput then

c = getBuf(); whatis := t.process(); goto 3.

Ticking a bind / sequence

[[c1 >>= c2]] :=

{ init := c1.init();

, tick := c1.tick()

, process := \a -> case c1.process(a) of

Skip -> Skip

Yield b -> Yield b

Done v -> (c2 v).init();

tick := (c2 v).tick()

process := (c2 v).process() }

16

[[c1 >>> c2]] :=

{ init := c1.init(); c2.init();

, tick := case c2.tick() of

Result r -> Result r

NeedInput -> case c1.tick() of

Skip -> Skip

Emit b -> c2.process(b)

NeedInput -> NeedInput

, process := \a ->

case c1.process(a) of

Skip -> Skip

Emit b -> c2.process(b) }

Speed! (Optimizations)

17

* From the SORA paper, [NSDI 2009]

Auto-vectorization

 Convert pipelines automatically to work with arrays

ST x a b ~~~> ST x (arr n a) (arr m b)

 Challenges: How to figure out the right multiplicities?

 Implemented “cardinality analysis”

 Searching space of vectorizations in two modes:
 Scale-up vectorization

 Scale-down vectorization

18

Scale-up vectorization

19

let block(u:unit) =
var y:int;

repeat(
(x : int) <- take1;
return(y := x+1);
emit (y)

)

let block_VECTORIZED (u: unit) =
var y: int;
repeat let vect_up_wrap_46 () =

var vect_ya_48: arr[4] int;
(vect_xa_47 : arr[4] int) <- take1;
__unused_174 <- times 4 (\vect_j_50. (x : int) <- return vect_xa_47[0*4+vect_j_50*1+0];

__unused_1 <- return y := x+1;
return vect_ya_48[vect_j_50*1+0] := y);

emit vect_ya_48
in
vect_up_wrap_46 (tt)

Program transformations

20

let block_VECTORIZED (u: unit) =
var y: int;
repeat let vect_up_wrap_46 () =

var vect_ya_48: arr[4] int;
(vect_xa_47 : arr[4] int) <- take1;
__unused_174 <- times 4 (\vect_j_50. (x : int) <- return vect_xa_47[0*4+vect_j_50*1+0];

__unused_1 <- return y := x+1;
return vect_ya_48[vect_j_50*1+0] := y);

emit vect_ya_48
in
vect_up_wrap_46 (tt)

let block_VECTORIZED (u: unit) =
var y: int;
repeat let vect_up_wrap_46 () =

var vect_ya_48: arr[4] int;
(vect_xa_47 : arr[4] int) <- take1;
emit let __unused_174 = for vect_j_50 in 0, 4 {

let x = vect_xa_47[0*4+vect_j_50*1+0]
in let __unused_1 = y := x+1

in vect_ya_48[vect_j_50*1+0] := y
}

in vect_ya_48
in vect_up_wrap_46 (tt)

Scale-down vectorization

For components that take/emit many elements

21

repeat let vect_dn_8 () =
var vect_xa_9: arr[80] int;
var vect_ya_10: arr[64] int;
__unused_33 <- times 20 (\vect_i_11. (xtemp_12 : arr[4] int) <- take1;

return vect_xa_9[vect_i_11*4:+4] := xtemp_12);
let (xp : arr[80] int) = vect_xa_9[0:+80]
in
let vect_res_13 = vect_ya_10[0:+64] := xp[16:+64]
in
__unused_32 <- times 16 (\vect_i_11. emit vect_ya_10[vect_i_11*4:+4]);
return vect_res_13

let t11aDataSymbol(u:unit) =
repeat (
(xp:arr[80] complex) <- take 80;
emits xp[16:79]

)

Vectorization boundaries and queues
if c then

repeat (take 3 elements; emit 4 elements)

else

repeat (take 2 elements; emit 3 elements)

22

if c then

repeat (take 3 elements; emit 4 elements) >>> write(out)

else

repeat (take 2 elements; emit 3 elements) >>> write(out)

Data paths now vectorize independently!

if c then

repeat (take 3 elements; emit 4 elements) >>> write(out)

else

repeat (take 2 elements; emit 3 elements) >>> write(out)

23

Pipelining with SMPs

802.11a transmitter:

24

read >>> (
hInfo <- emitHeader(tt) >>> scrambler(tt) >>>

encode(12) >>>
interleaver(bpsk) >>>
modulate(bpsk) >>> map_ofdm(tt)) ;

scrambler(tt) >>> encode(hInfo[2])
>>> interleaver(hinfo[1]) >>> modulate(hinfo[1]) >>> map_ofdm(tt)

) >>> write

Pipelining with SMPs

25

bar

read(q1) >>> bar >>> write(q2)

Thread 1, pin to Core 1 Thread 2, pin to Core 2

Status report
 Fully working language and compiler implementation

 Other features: SIMD-programming library

 Interfacing with external C-functions

 Re-using SORA driver (for faster kernel-space run)

 Vectorizer *really* works: 2x faster on the complete Wifi receiver
pipeline, up to 4x faster on individual components.

 Processing rate: single-CPU, SIMD+vectorized ~ 200ms/20MB =
twice as fast as the protocol requirements

26

In the pipeline

27

Working on:

1. Finalizing pipeline parallelization

2. Detailed profiling and evaluation

3. Writing paper, implementing more challenging protocols (4G LTE)

Future:

1. Cost models of execution model and vectorizer

2. FPGA backend, heterogeneous compilation

3. Verification of arithmetic floating point errors

4. Resource bounds prediction or modeling

Join us!

As users, or developers …

28

©2013 Microsoft Corporation. All rights reserved.

