Regular Expression Parsing, Greedily and
Stingily

Bjorn Bugge Grathwohl Fritz Henglein
Lasse Nielsen Ulrik Terp Rasmussen

Department of Computer Science,
University of Copenhagen

WG 2.8 Meeting, Aussois
October 18, 2013

Regular Expressions

» Regular Expressions (RE):

E:=0[1|lalEyxE|Ei+E| Ef (ae X)

» x binds tighter than +.

» Assume non-problematic REs: No REs containing
sub-REs of the form E* where E nullable.

» All results extend to problematic REs, but are more
complicated to state and prove.

What is Regular Expression “Matching”?

Given s € X*.

1. Acceptance testing: Is s € L[E]?
» String searching: Find some substring s’ of s such that
s’ € L[E]. (Variation: Find all substrings.)

2. Pattern matching: Given s € £*, find substrings of s such
that each matches a sub-RE in E. (Variation: Return
multiple matches for each sub-RE.)

3. Parsing: Return complete parse tree of s under E, if it
exists
Note:
» Increasing information content.

» Classical automata theory (NFA->DFA, DFA minimization,
etc.) applies only to acceptance testing.

» Pattern matching returns only one element match under x.

Example

RE = ((a+ b) x (c+d))*. Input string = acbd.
1. Acceptance testing: Yes!
2. Pattern matching: (0,4), (2,4),(2,3), (3,4)
3. Parsing: [(inl a,inl ¢), (inr b,inr d)]

Regular Expressions as Types

» Type interpretation T[E]:

Jo] = 0
Tl = {0}
Tlal = {a}
TIEr x E2] = {(Wy, Vo) | Vy € TIEq], V2 € TIEI}
TIEi + E] = f{inl Vi | Vy e TIE(]}
u{inr Vo | Vo € TIE]}
TIE*] = {V4,...,Valln=0A

V1 <i<n Ve TlE]}

» Parse tree = value

Unparsing (“Flattening”)

» Flattening yields underlying string:

flat(()) = e
flatla) = a
flat((V4, Vo)) = flat(V;)flat(Vo)
flat(inl V4) = flat(Vy)
flat(inr h) = flat(Vs)
flat([V4,..., Val) flat(Vy) - - - flat(V)

» The parse trees for a given string s:
TslE] ={V € TLE] | flat(V) = s}.

Proposition
LIE] ={flat(V) | V € TIE]}.

Challenges

v

Grammatical ambiguity: Which parse tree to return?

v

How to represent parse trees compactly?

v

Time: Straightforward backtracking algorithm, but
impractical: ©(m2™") time, where m = |E|, n =|s|.

v

Space: How to minimize RAM consumption?

Disambiguation

» RE E ambiguous iff |[Ts[E]| > 1 for some s.

» How to deterministically choose one V € Ts[E] among
several possible candidates?

» Greedy matching: Intuitively, choose what a backtracking
parser returns:

1. Try left alternative first,
2. If it fails, backtrack and try the right alternative.
3. Treat E* as E x E* +1.

Greedy Order <y

inl vV <y
[V1,...] <y
(Vi, Vo) <y

inl vV <y

inrV <y
[V1,...] <y
Vi, Vo,...] =<y

Proposition (Frisch/Cardelli)

inr V
I
(V{, V)

inl V/
inr V'
(v/,...]

[V, V4, ..

]

if

if
if

if

Vi<y VoV
(V1 = V{/\ V2<VV2’)
V<vy "4
V<vy "4
V1<\7V1/
Va, ... 1<v[V{,...]

For any RE E, string s, <v is a strict well-founded total order on

Ts[E].

Definition

Greedy parse for s € L[E]: minx, Ts[E].

Bit-Coding

» Compact representation of parse trees where the RE is
known.

» Encoding™-7:V — {1, 0},

07 = e
a' = €
(Vi, Vo) 7 = TVi Vo
Cinl (V)7 = 0" V4"
Tinr (Vg)—l = 1"V,
Vi,..., Vo7 = 0"V 0"V, 1

» Type-indexed decoding v-.g : {1,0}* — T[E]: Interpret RE
as nondeterministic algorithm to construct parse tree, with
bit-code as oracle. (“Every bit counts.”)

» BIE]={"V"|V e TIEI}

> B[El ={"V| V € TS[E]L

Example

RE = ((a+ b) x (c+ d))*. Input string = acbd.
1. Acceptance testing: Yes!
2. Pattern matching: (0,4), (2,4),(2,3), (3,4)
3. Parsing: [(inl a,inl ¢), (inr b,inr d)]
» Bit-code: 000011 1.

Augmented NFAs

Augmented NFA (aNFA) is a 5-tuple M € (Q, L, A, g5, 7).
States Q; g%, g’ € Q start and finishing states.
Input alphabet *.
Labeled transition relation A € Q x (ZU{1,0}uU{1,0}) x
» ¥ input labels; {1, 0} output labels; {1, 0} log labels.

vV v v Vv

Write g 2, q’ if there is a walk from g to q’; p sequence of
labels.

» in(p) = input label subsequence;

» out(p) = output labels;

» log(p) = log labels.

v

aNFA Construction (1/2)

» Define N(E, g%, q) as set of aNFAs for E, with start and
finishing states g%, g':

aNFA Construction (2/2)

N(E, g% q")

E1 XE2

Ey+E

Representation Theorem

Theorem
Let M =N(E, g%, q"). The paths of M are in one-to-one
correspondence with the parse trees of E:

BS[E] = {out(p) | ¢° £ ¢f,in(p) = s}

Greedy parse = Lexicographically least bitcode

Proposition
Forall E, V,V' € T[E]:

V-<V v/ e V—'—<B'_ v/7
where <3 is lexicographic ordering on {0, 1}*.

Corollary
Let M =N(E,q% q"). Forall s € L[E]:

min Ts[E] = .min{out(p) | g° L8 q’,in(p) = s}.k.
<y <B

Monotonicity of <4

Proposition

,0101
HON

If p1 not prefix of po, then

out(py)<p out(ps) = out(p;qy) <5 out(p2qs)

Lean-log algorithm

v

Simulate aNFA for input s, using ordered state sets.

» Each state represents lexicographically least path from
initial state to it.

» States are ordered according to the lexicographic ordering
on the paths they represent.

v

Perform state-ordered e-closure: Log 1 bit per join state for
each input character.

v

Use reverse aNFA and log bits to construct bit-code.

v

(Construct parse tree from bit-code, if desired.)

Example: Parse aaa with RE (aa + a)*

» Input: aaa

Example: Parse aaa with RE (aa + a)*

» Input: aaa
@
@

@

Log
@:
(6):

Example: Parse aaa with RE (aa + a)*

» Input: a aa

Example: Parse aaa with RE (aa + a)*

» Input: aaa
.

Log
@ 1
®: -

- of|wM

Example: Parse aaa with RE (aa + a)*

» Input: aaa

€

Log
@ 1
®: -

- of|wM

Key properties of lean-log algorithm

» Semi-streaming: Forward streaming pass over input,
logging join-state bits; backward pass for constructing
bit-code.

» Two passes required because of disambiguation requiring
unbounded look-ahead.

» Input string read in streaming fashion, using O(m) working
memory and kn bits of LIFO memory for the log.

» Input string need not be stored. (Consider input coming
from a generator.)

» Runs intime O(mn).

20

Implementation

» Implementations of lean-log algorithm

» Straightforward Haskell version

» Optimized Haskell version, based on Conduit (10 times
faster and)

» Straightforward C version (10 times faster than fast Haskell
version)

» No NFA-minimization, no DFA generation, no word-level
parallelism, no special RE-processing, no special handling
of bounded iteration.

21

Performance

v

Better performance than Play

Competitive with RE2 when RE2 does not employ static
optimizations, or when subjected to REs that are not
“tuned” to Perl (made deterministic)

Otherwise competitive with Grep and other tools, but not
with RE2.

Note: These tools perform only acceptance testing or RE
pattern matching, not full parsing; and they don’t always do
it correctly.

Best amongst all tested full RE parsers (both greedy and
other).

22

Related work

See paper at CIAA 2013.

23

Questions?

Questions?

24

What does this have to do with FP?

» REs are a declarative DSL
» Widely used, but still underused (notably REs with nested
x, ambiguous REs)
» REs as types
» Already in FP languages: unit, singleton, Cartesian
product, direct sum, tail-recursive types.
» RE containment as type coercions: order-preserving linear
functions.
» Types capture programming intension of REs, are elegant
theoretical framework (e.g. definition of ambiguity)
» Bit-coding as efficient unboxed data type representation
» for strings: bit-code of string as element of £* = the string
itself; as element of E C *, fewer bits.
» for simple and recursive types: unboxed data
representation, with certain type isomorphisms as identies
(noop-coercions); e.g. Ax (Bx C)=(Ax B) x C.

25

	Regular Expression Parsing
	Regular Expressions as Types
	Disambiguation

	Symmetric NFA Representation of Parse Trees
	Bit-Coding
	Symmetric NFA Representation of Parse Trees

	Contributions
	Greedy Parse as Lexicographically Least Bit-Coding
	Lean-Log Algorithm

