Naturality, but not as you know it—Prologue WG2.8 #31, Aussois, October 2013

Naturality, but not as you know it

Ralf Hinze

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England
ralf_hinze@cs.ox.ac.uk
http://www.cs.ox.ac.uk/ralf_hinze/

October 2013

Joint work with Fritz Henglein

University of Oxford—Ralf Hinze

Naturality, but not as you know it—Prologue WG2.8 #31, Aussois, October 2013

O Recap: Key-based sorting & searching

Idea: employ the structure of sort keys directly.

A hierarchy of operations:

sort :Orderk ¥ k v T v
discr::Orderk ¥ k v @1 v
trie ::Orderk ¥ k v ¥ Triek v

Keys and satellite data, ie values, are separated.
An element of Order K represents an order over the type K:

dataOrder:: ¥ where
OuUnit :: Order
OSum :: Orderk; ¥ Orderk, ¥ Order k; ko
T Order ki ko

OProd :: Orderk; ¥ Orderk;

University of Oxford—Ralf Hinze 2-22

Naturality, but not as you know it—Prologue WG2.8 #31, Aussois, October 2013

O Structure of correctness proofs

Show that sort is correct.

Relate sort and discr:

concat discro sorto

This is nontrivial as discr and sort have different algorithmic
strategies: MSD versus LSD.

Relate discr and trie:

discro flatten trieo

This is straightforward.

University of Oxford—Ralf Hinze 3-22

Naturality, but not as you know it—Naturality

1 Recap: Naturality

e reverse:: a Y a isa natural transformation:

maph reverse reverse maph

forallh:: A T B.
e (Parametricity implies naturality.)
e (We work in Set.)

University of Oxford—Ralf Hinze

WG2.8 #31, Aussois, October 2013

Naturality, but not as you know it—Naturality WG2.8 #31, Aussois, October 2013

1 Recap: Naturality

e Given magic:: a T a with
maph magic magic maph

forallh:: A I B,
e What do we know about magic?

University of Oxford—Ralf Hinze 5-22

Naturality, but not as you know it—Naturality WG2.8 #31, Aussois, October 2013

1 Recap: Naturality

e magic:: a T a is fully determined by its N instance.

magic xs

fintroduce ix:N ¥ Asothat mapix 1::n Xs g
magic mapix 1l::n

f magic is natural g
mapix magic 1l::n

University of Oxford—Ralf Hinze 6-22

Naturality, but not as you know it—Naturality

1 Recap: Naturality

e Say, we suspect that magic reverse.
e |t suffices to show that magic 1::n

magic xs
f see above g
mapix magic 1l::n
f proof obligation g
mapix reverse 1l::n
f reverse is natural g
reverse mapix 1::n
f definition of ix g
reverse xs

University of Oxford—Ralf Hinze

WG2.8 #31, Aussois, October 2013

reverse 1::n .

Naturality, but not as you know it—Naturality

1 Recap: Naturality

e What about magic
e (Intuitively, magic:: a ¢
e rearrange elements,

e delete elements,
e duplicate elements,

e but it cannot
e create elements.)

University of Oxford—Ralf Hinze

?

a can

WG2.8 #31, Aussois, October 2013

Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Strong naturality

reverse:: a @ a satisfies a stronger property:
filterp reverse reverse filterp

forall p:: A ¥ MaybeB.
(You may want to view p as a partial function.)

filter combines mapping and filtering.

filter:: a ¥ Maybeb ¥ a I b

filterp

filterp x:xs casepxof
Nothing ¥ filter pxs
Justy 1 y:filterpxs

(Also called mapMaybe.)

University of Oxford—Ralf Hinze 9-22

Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Strong naturality

e Given magic:: a T a with
filterp magic magic filterp

forall p:: A ¥ MaybeB.
e What do we know about magic?

University of Oxford—Ralf Hinze 10-22

Naturality, but not as you know it—Strong naturality

2 Strong naturality

e What about magic ?

WG2.8 #31, Aussois, October 2013

e Let ; be the totally undefined function, ; a Nothing, then

magic

f property of filter g
magic filter 3

f magic is strongly natural g
filter 3 magic

f property of filter g

University of Oxford—Ralf Hinze

11-22

Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Permutation

e Ifmagic:: a T a additionally satisfies
magic X X

then it permutes its input!

e (For simplicity, we only consider inputs with no repeated
elements.)

University of Oxford—Ralf Hinze 12-22

Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Permutation

e Ifmagic:: a T a additionally satisfies
magic X X

then it permutes its input!

e (For simplicity, we only consider inputs with no repeated
elements.)

e Let [x| be the partial function that maps x to x and is
undefined otherwise, [xfa ifx-- athenJustxelse Nothing.

e Definition: perm:: a ¥ a permutes its inputif
filter x§ perm filter x|

for all x:: a.

University of Oxford—Ralf Hinze 12-22

Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Permutation

e Here is the proof:

filter [if magic 1::n
f magic is strongly natural g
magic filter Jif 1::n
T definition of filter g
magic ifl i nthen i else
f conditionals g
ifl i nthenmagic i else magic
f magic and assumption magic i i g
ifl i nthen i else
f definition of filter g
filter 7if 1::n

University of Oxford—Ralf Hinze 13-22

Naturality, but not as you know it—Strong naturality

2 Reversal

e Ifmagic:: a T a additionally satisfies
magic X;y Yi X

then it reverses its input!

University of Oxford—Ralf Hinze

WG2.8 #31, Aussois, October 2013

14-22

Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Reversal

e Ifmagic:: a T a additionally satisfies
magic X;y Yi X

then it reverses its input!

e Let [x;y{ be the partial function that maps x toxandy to y
and is undefined otherwise.

e \We have

xs ys O 8xy:filter{x;yixs filterx;yfys

University of Oxford—Ralf Hinze 14-22

Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Reversal

e Here is the proof:

magic 1::n reverse 1::n
O f see above g
8ij : filter 1i;j§ magic 1::n filter i;j§ reverse 1::n

e Assume 1l i;j n,then

filter 1i;j§ magic 1::n filter 1i;j§ reverse 1::n
O T definition of reverse and filter g

filter 1i;j§ magic 1::n ;i
O f magic is strongly natural g

magic filter i;j§ 1::n ;i
O f definition of filter g

magic i;j ;i

e The other cases are similar.

University of Oxford—Ralf Hinze 15-22

Naturality, but not as you know it—Categorically speaking WG2.8 #31, Aussois, October 2013

3 Categorically speaking

e map is the arrow part of a functor List: Set ¥ Set.
e reverse is a natural transformation between List and List.
e What about filter?

University of Oxford—Ralf Hinze 16-22

Naturality, but not as you know it—Categorically speaking WG2.8 #31, Aussois, October 2013

3 Categorically speaking

e map is the arrow part of a functor List: Set ¥ Set.

e reverse is a natural transformation between List and List.
e What about filter?

e filter is the arrow part of a functor Filter : Setyayne ¥ Set.
e Setyaybe IS the Kleisli category of the monad Maybe.

¢ (You may want to view Setyayne as the category of partial
functions.)

e The object part of Filter is just Filter A A .
e reverse is a natural transformation between Filter and Filter.

University of Oxford—Ralf Hinze 16-22

Naturality, but not as you know it—Categorically speaking WG2.8 #31, Aussois, October 2013

3 Properties of filter

o filter is a monoid homomorphism:

filterp
filterp xs ys filterpxs filterpys

o filter preserves identity and composition:

filterid id
filter p ¢ filterp filterq

The arguments of filter live in the Kleisli category Setyaybe.

University of Oxford—Ralf Hinze 17-22

Naturality, but not as you know it—Application: Sorting WG2.8 #31, Aussois, October 2013

4 Key-based sorting: correctness

e sort is correct:
e sorto is strongly natural:

filterp sorto sorto filter id p

e sorto produces a permutation of the input values:
sorto k;v \Y%

e values are output in non-decreasing order of their keys:
sorto a;i; b;j i;j O leqoab

leg::Orderk ¥ k ¥ k ¥ B interprets an order representation.

University of Oxford—Ralf Hinze 18-22

Naturality, but not as you know it—Application: Sorting WG2.8 #31, Aussois, October 2013

4 Key-based sorting: correctness

e Relate sort and discr:

e discr commutes with strong natural transformations: if perm is
strongly natural, filterp perm perm filter id p , then

mapperm discro discro perm mapswap : K AV I 'V
e This is straightforward then:

concat discro sorto

University of Oxford—Ralf Hinze 19-22

Naturality, but not as you know it—Epilogue WG2.8 #31, Aussois, October 2013

5 Summary

e Strong naturality: an amusing twist on naturality.

o Key-based sorting: strong naturality, coupled with preserving
singletons and correct sorting of two-element lists,
corresponds to Henglein’s consistent permutativity, which
characterizes stable sorting functions.

e For the details see:
Henglein, F., Hinze, R.: Sorting and Searching by Distribution:
From Generic Discrimination to Generic Tries. In Shan, C., ed.:
Proc. 11th Asian Symposium on Programming Languages and
Systems (APLAS), (December 2013).

University of Oxford—Ralf Hinze 20-22

Naturality, but not as you know it—Appendix WG2.8 #31, Aussois, October 2013

6 Generic key-based sorting

e sorto takes a list of key-value pairs and returns the values in
non-decreasing order of their associated keys.

sort::Orderk ¥ k v ¢ v
sorto
sort OUnit rel mapvalrel
sort OSumoj o, rel sortop filter fromlrel
sorto, filter fromrrel
sort OProdoi 02 rel sorto; sorto, mapcurryrrel

e LSD strategy:

curryr:: ki ko v Tk, ki Vv
curryr Kip;kz ;v ko: ki;v

University of Oxford—Ralf Hinze 21-22

Naturality, but not as you know it—Appendix WG2.8 #31, Aussois, October 2013

6 Generic key-based discrimination

e discro returns a list of non-empty lists of values, where the
inner lists group values whose keys are equivalent.

discr::Orderk ¥ k v 1 v

discro

discro k;v \Y;

discr OUnit rel map val rel

discr OSumo; 0y rel discro; filter fromlrel
discro, filter fromrrel

discr OProdo; 0y rel concat map discroz

discro; mapcurrylrel
e MSD strategy:
curryl:: k1 ko v Tk ko v

curryl Kki;kz ;v ki; ko;v

University of Oxford—Ralf Hinze 22-22

	Prologue
	Naturality
	Strong naturality
	Categorically speaking
	Application: Sorting
	Epilogue
	Appendix

