
Naturality, but not as you know it—Prologue WG2.8 #31, Aussois, October 2013

Naturality, but not as you know it

Ralf Hinze

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@cs.ox.ac.uk
http://www.cs.ox.ac.uk/ralf.hinze/

October 2013

Joint work with Fritz Henglein

University of Oxford—Ralf Hinze 1-22



Naturality, but not as you know it—Prologue WG2.8 #31, Aussois, October 2013

0 Recap: Key-based sorting & searching

• Idea: employ the structure of sort keys directly.

• A hierarchy of operations:

sort :: Order k! �k� v�! �v�
discr :: Order k! �k� v�! ��v��
trie :: Order k! �k� v�! Trie k �v�

• Keys and satellite data, ie values, are separated.

• An element of Order K represents an order over the type K:

data Order ::� ! �where
OUnit :: Order ��
OSum :: Order k1 ! Order k2 ! Order �k1 � k2�
OProd :: Order k1 ! Order k2 ! Order �k1 � k2�
: : :

University of Oxford—Ralf Hinze 2-22



Naturality, but not as you know it—Prologue WG2.8 #31, Aussois, October 2013

0 Structure of correctness proofs

• Show that sort is correct.

• Relate sort and discr:

concat � discr o � sort o

• This is nontrivial as discr and sort have different algorithmic
strategies: MSD versus LSD.

• Relate discr and trie:

discr o � flatten � trie o

• This is straightforward.

University of Oxford—Ralf Hinze 3-22



Naturality, but not as you know it—Naturality WG2.8 #31, Aussois, October 2013

1 Recap: Naturality

• reverse :: �a�! �a� is a natural transformation:

map h � reverse � reverse �map h

for all h :: A! B.

• (Parametricity implies naturality.)

• (We work in Set.)

University of Oxford—Ralf Hinze 4-22



Naturality, but not as you know it—Naturality WG2.8 #31, Aussois, October 2013

1 Recap: Naturality

• Given magic :: �a�! �a� with

map h �magic �magic �map h

for all h :: A! B.

• What do we know about magic?

University of Oxford—Ralf Hinze 5-22



Naturality, but not as you know it—Naturality WG2.8 #31, Aussois, October 2013

1 Recap: Naturality

• magic :: �a�! �a� is fully determined by its N instance.

magic xs

� f introduce ix : N! A so that map ix �1 : : n� � xs g
magic �map ix �1 : : n��

� fmagic is natural g
map ix �magic �1 : : n��

University of Oxford—Ralf Hinze 6-22



Naturality, but not as you know it—Naturality WG2.8 #31, Aussois, October 2013

1 Recap: Naturality

• Say, we suspect that magic � reverse.

• It suffices to show that magic �1 : : n� � reverse �1 : : n�.

magic xs

� f see above g
map ix �magic �1 : : n��

� f proof obligation g
map ix �reverse �1 : : n��

� f reverse is natural g
reverse �map ix �1 : : n��

� f definition of ix g
reverse xs

University of Oxford—Ralf Hinze 7-22



Naturality, but not as you know it—Naturality WG2.8 #31, Aussois, October 2013

1 Recap: Naturality

• What about magic � � � � �?

• (Intuitively, magic :: �a�! �a� can
• rearrange elements,
• delete elements,
• duplicate elements,

• but it cannot
• create elements.)

University of Oxford—Ralf Hinze 8-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Strong naturality

• reverse :: �a�! �a� satisfies a stronger property:

filter p � reverse � reverse � filter p

for all p :: A! Maybe B.

• (You may want to view p as a partial function.)

• filter combines mapping and filtering.

filter :: �a! Maybe b�! ��a�! �b��
filter p � � � � �
filter p �x : xs� � case p x of

Nothing! filter p xs
Just y ! y : filter p xs

• (Also called mapMaybe.)

University of Oxford—Ralf Hinze 9-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Strong naturality

• Given magic :: �a�! �a� with

filter p �magic �magic � filter p

for all p :: A! Maybe B.

• What do we know about magic?

University of Oxford—Ralf Hinze 10-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Strong naturality

• What about magic � � � � �?

• Let ; be the totally undefined function, ;a � Nothing, then

magic � �
� f property of filter g

magic �filter; � ��
� fmagic is strongly natural g

filter; �magic � ��
� f property of filter g

� �

University of Oxford—Ralf Hinze 11-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Permutation

• If magic :: �a�! �a� additionally satisfies

magic �x� � �x�

then it permutes its input!

• (For simplicity, we only consider inputs with no repeated
elements.)

• Let *x+ be the partial function that maps x to x and is
undefined otherwise, *x+ a � if x a then Just x else Nothing.

• Definition: perm :: �a�! �a� permutes its input if

filter *x+ � perm � filter *x+

for all x :: a.

University of Oxford—Ralf Hinze 12-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Permutation

• If magic :: �a�! �a� additionally satisfies

magic �x� � �x�

then it permutes its input!

• (For simplicity, we only consider inputs with no repeated
elements.)

• Let *x+ be the partial function that maps x to x and is
undefined otherwise, *x+ a � if x a then Just x else Nothing.

• Definition: perm :: �a�! �a� permutes its input if

filter *x+ � perm � filter *x+

for all x :: a.

University of Oxford—Ralf Hinze 12-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Permutation

• Here is the proof:

filter *i+ �magic �1 : : n��
� fmagic is strongly natural g

magic �filter *i+ �1 : : n��
� f definition of filter g

magic �if 1 à i à n then �i� else � ��
� f conditionals g

if 1 à i à n then magic �i� else magic � �
� fmagic � � � � � and assumption magic �i� � �i� g

if 1 à i à n then �i� else � �
� f definition of filter g

filter *i+ �1 : : n�

University of Oxford—Ralf Hinze 13-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Reversal

• If magic :: �a�! �a� additionally satisfies

magic �x; y� � �y; x�

then it reverses its input!

• Let *x; y+ be the partial function that maps x to x and y to y
and is undefined otherwise.

• We have

xs � ys () 8x y : filter *x; y+ xs � filter *x; y+ ys

University of Oxford—Ralf Hinze 14-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Reversal

• If magic :: �a�! �a� additionally satisfies

magic �x; y� � �y; x�

then it reverses its input!

• Let *x; y+ be the partial function that maps x to x and y to y
and is undefined otherwise.

• We have

xs � ys () 8x y : filter *x; y+ xs � filter *x; y+ ys

University of Oxford—Ralf Hinze 14-22



Naturality, but not as you know it—Strong naturality WG2.8 #31, Aussois, October 2013

2 Reversal
• Here is the proof:

magic �1 : : n� � reverse �1 : : n�
() f see above g

8i j : filter *i; j+ �magic �1 : : n�� � filter *i; j+ �reverse �1 : : n��

• Assume 1 à i; j à n, then

filter *i; j+ �magic �1 : : n�� � filter *i; j+ �reverse �1 : : n��
() f definition of reverse and filter g

filter *i; j+ �magic �1 : : n�� � �j; i�
() fmagic is strongly natural g

magic �filter *i; j+ �1 : : n�� � �j; i�
() f definition of filter g

magic �i; j� � �j; i�

• The other cases are similar.

University of Oxford—Ralf Hinze 15-22



Naturality, but not as you know it—Categorically speaking WG2.8 #31, Aussois, October 2013

3 Categorically speaking

• map is the arrow part of a functor List : Set! Set.

• reverse is a natural transformation between List and List.

• What about filter?

• filter is the arrow part of a functor Filter : SetMaybe ! Set.

• SetMaybe is the Kleisli category of the monad Maybe.

• (You may want to view SetMaybe as the category of partial
functions.)

• The object part of Filter is just Filter A � �A�.

• reverse is a natural transformation between Filter and Filter.

University of Oxford—Ralf Hinze 16-22



Naturality, but not as you know it—Categorically speaking WG2.8 #31, Aussois, October 2013

3 Categorically speaking

• map is the arrow part of a functor List : Set! Set.

• reverse is a natural transformation between List and List.

• What about filter?

• filter is the arrow part of a functor Filter : SetMaybe ! Set.

• SetMaybe is the Kleisli category of the monad Maybe.

• (You may want to view SetMaybe as the category of partial
functions.)

• The object part of Filter is just Filter A � �A�.

• reverse is a natural transformation between Filter and Filter.

University of Oxford—Ralf Hinze 16-22



Naturality, but not as you know it—Categorically speaking WG2.8 #31, Aussois, October 2013

3 Properties of filter

• filter is a monoid homomorphism:

filter p � � � � �
filter p �xs�� ys� � filter p xs�� filter p ys

• filter preserves identity and composition:

filter id � id

filter �p � q� � filter p � filter q

The arguments of filter live in the Kleisli category SetMaybe.

University of Oxford—Ralf Hinze 17-22



Naturality, but not as you know it—Application: Sorting WG2.8 #31, Aussois, October 2013

4 Key-based sorting: correctness

• sort is correct:
• sort o is strongly natural:

filter p � sort o � sort o � filter �id� p�

• sort o produces a permutation of the input values:

sort o ��k; v�� � �v�

• values are output in non-decreasing order of their keys:

sort o ��a; i�; �b; j�� � �i; j� () leq o a b

leq :: Order k! �k! k! B� interprets an order representation.

University of Oxford—Ralf Hinze 18-22



Naturality, but not as you know it—Application: Sorting WG2.8 #31, Aussois, October 2013

4 Key-based sorting: correctness

• Relate sort and discr:
• discr commutes with strong natural transformations: if perm is

strongly natural, filter p � perm � perm � filter �id� p�, then

map perm � discr o � discr o � perm �map swap : �K��A�V��! ��V��

• This is straightforward then:

concat � discr o � sort o

University of Oxford—Ralf Hinze 19-22



Naturality, but not as you know it—Epilogue WG2.8 #31, Aussois, October 2013

5 Summary

• Strong naturality: an amusing twist on naturality.

• Key-based sorting: strong naturality, coupled with preserving
singletons and correct sorting of two-element lists,
corresponds to Henglein’s consistent permutativity, which
characterizes stable sorting functions.

• For the details see:
Henglein, F., Hinze, R.: Sorting and Searching by Distribution:
From Generic Discrimination to Generic Tries. In Shan, C., ed.:
Proc. 11th Asian Symposium on Programming Languages and
Systems (APLAS), (December 2013).

University of Oxford—Ralf Hinze 20-22



Naturality, but not as you know it—Appendix WG2.8 #31, Aussois, October 2013

6 Generic key-based sorting

• sort o takes a list of key-value pairs and returns the values in
non-decreasing order of their associated keys.

sort :: Order k! �k� v�! �v�
sort o � � � � �
sort �OUnit� rel �map val rel
sort �OSum o1 o2� rel � sort o1 �filter froml rel�

�� sort o2 �filter fromr rel�
sort �OProd o1 o2� rel � sort o1 �sort o2 �map curryr rel��

• LSD strategy:

curryr :: �k1 � k2�� v! k2 � �k1 � v�
curryr ��k1; k2�; v� � �k2; �k1; v��

University of Oxford—Ralf Hinze 21-22



Naturality, but not as you know it—Appendix WG2.8 #31, Aussois, October 2013

6 Generic key-based discrimination

• discr o returns a list of non-empty lists of values, where the
inner lists group values whose keys are equivalent.

discr :: Order k! �k� v�! ��v��
discr o � � � � �
discr o ��k; v�� � ��v��
discr OUnit rel � �map val rel�
discr �OSum o1 o2� rel � discr o1 �filter froml rel�

�� discr o2 �filter fromr rel�
discr �OProd o1 o2� rel � concat �map �discr o2�

�discr o1 �map curryl rel���

• MSD strategy:

curryl :: �k1 � k2�� v! k1 � �k2 � v�
curryl ��k1; k2�; v� � �k1; �k2; v��

University of Oxford—Ralf Hinze 22-22


	Prologue
	Naturality
	Strong naturality
	Categorically speaking
	Application: Sorting
	Epilogue
	Appendix

