
Clojure:
What Just Happened?

Rich Hickey



Clojure is Becoming 
Popular

• Popular*

• Functional

• Lisp

• Not terribly novel



How Popular?
• 8000+ member mailing list

82,000+ messages

• 700+ on IRC

• #2 (behind Scala) non-Java JVM server lang

• Many companies use in production

Startups to Fortune 50

• > Dozen books, several 2nd editions

• 3 Clojure conferences per year



Github New Repos 
2013 (thus far)

Rank Lang New repos

15 Scala 6918

16 Go 6884

17 Prolog 5829

18 Clojure 4904

19 Haskell 4681

20 Lua 4048



Context
• JVM

• PHP, Python, Perl, Ruby

broke C-lineage stranglehold

demonstrated dynamic lang agility

• Paul Graham’s essays

• Crushing complexity of stateful OO

• JSON, XML



Right Place, Right Time?

• In fall 2007 when announced, no one had 
heard of me nor Clojure

• 18,000 hits the first day



Survey 2012 - Growth
Stopped

1%

< 1 year
43%

1 year
18%

2 years
18%

3 years
14%

4+years
6%

1,372 respondents

http://cemerick.com/2012/08/06/results-of-the-2012-state-of-clojure-survey/

http://cemerick.com/2012/08/06/results-of-the-2012-state-of-clojure-survey/
http://cemerick.com/2012/08/06/results-of-the-2012-state-of-clojure-survey/


From Where?

Java

Ruby

Python

C#

Erlang/Scala/Haskell

Other

0 10 20 30 40



Why?



Practical

• Target - use it wherever you could use Java

both reach and performance

• Tool, for professional programmers

hobbyists welcome

• General purpose programming



Small

• A basic Lisp evaluation model

• No continuations, condition systems etc



Simple

• Few, orthogonal axes

• Functions, data, state model, evaluation 
model, macros etc



FP Benefits, Distilled
• Pure functions + immutable data

• Made practical and idiomatic

• Efficient persistent data structures the 
default

• Functional core library

• No mutable local variables

• Clearly separate state constructs



Opinionated

• Fewer choices

• Set of decisions made and encoded

• Everything works together



Eschews Types for 
Information

• Simple data - lists, vectors, maps, sets

• Associative collections in lieu of objects

• First-class names (keywords)



Minimal Type-Specific 
Code

• just generic map-manipulation code

• therefore, much less code

• more reuse

• better interop and libs

• facilitates systems building

• less compiler help



Runtime Polymorphic

• People coming from OO understand and 
expect this

• Abstractions for everything (even invocation)

• Polymorphism constructs are ‘open’



Concurrency?

• Not so much

• Part of initial story

• Has to be there

• but rarely needed



Hosted

• Dominant hosts (JVM, JS)

• Great interop

• Libraries out of the gate

• No migration pain

• Easy to sneak in

“just another library”



Lisp

• Still has appeal

• Small core, rest is libs

• Runtime redef, code loading, macros

• Code-as-data, read/print, REPL

• but enhancements matter

fp, collections, syntax, abstractions



Permissive

• “Consenting adults” language

• Support the right thing

• vs disallow the wrong



Support and Evangelism

• 3 years x 10 hours/day

Mailing list and IRC

• Lots of talks and travel



Stability

• All programs from first book (2009) still 
work

• Always a high priority



The Blub Paradox?

• People don’t know what they are missing?

• They know what they are getting

• Simpler and more robust programs

• High productivity

• Resulting systems work, perform well, 
and are flexible

• Clojure is an effective tool



Biggest Wins

Functional

REPL

Platform/JVM

Immutability

Productivity

Macros

Concurrency

0 22.5 45 67.5 90



Gateway Drug?

Scala

Haskell

Python

Common Lisp

Ruby

Java

Scheme

Erlang

0 10 20 30 40

If Clojure disappeared, then what?

“too depressing to contemplate”



Thanks!


