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Execution wants to be structured horizontally

• Overlap multiple requests
• Batch requests to the same data source
• Cache multiple requests for the same data

database

thrift

memcache



• Furthermore, each data source has different 
characteristics
• Batch request API?

• Sync or async API?

• Set up a new connection for each request, or keep a 
pool of connections around?

• Want to abstract away from all of this in the 
business logic layer



But we know how to do this!
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• Concurrency.
Threads let us keep our abstractions & modularity while 
executing things at the same time.

• Caching/batching can be implemented as a service in 
the process
• as we do with the IO manager in GHC

• But concurrency (the programing model) isn’t what 
we want here.

• Example...



• x and y are Facebook users

• suppose we want to compute the number of 
friends that x and y have in common

• simplest way to write this:

length (intersect (friendsOf x) (friendsOf y))



Brief detour: TAO
• TAO implements Facebook’s data model

• most important data source we need to deal with

• Data is a graph
• Nodes are “objects”, identified by 64-bit ID
• Edges are “assocs” (directed; a pair of 64-bit IDs)

• Objects and assocs have a type
• object fields determined by the type

• Basic operations:
• Get the object with a given ID
• Get the assocs of a given type from a given ID

User A

User B

User C

User D

FRIENDS



• Back to our example

length (intersect (friendsOf x) (friendsOf y))

• (friendsOf x) makes a request to TAO to get all the 
IDs for which there is an assoc of type FRIEND (x,_).

• TAO has a multi-get API; very important that we 
submit (friendsOf x) and (friendsOf y) as a single 
operation.
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Using concurrency

• This:

• Becomes this:

length (intersect (friendsOf x) (friendsOf y))

do
m1 <- newEmptyMVar
m2 <- newEmptyMVar
forkIO (friendsOf x >>= putMVar m1)
forkIO (friendsOf y >>= putMVar m2)
fx <- takeMVar m1
fy <- takeMVar m2
return (length (intersect fx fy))





• Using the async package:

do
ax <- async (friendsOf x)
ay <- async (friendsOf y)
fx <- wait ax
fy <- wait ay
return (length (intersect fx fy))





• Using Control.Concurrent.Async.concurrently:

do
(fx,fy) <- concurrently (friendsOf x) (friendsOf y)
return (length (intersect fx fy))





Why not concurrency?
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• obviously independent
• obviously both needed
• “pure”
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Why not concurrency?

• friendsOf x and friendsOf y are 
• obviously independent
• obviously both needed
• “pure”

• Caching is not just an optimisation:
• if friendsOf x is requested twice, we must get the same 

answer both times
• caching is a requirement

• we don’t want the programmer to have to ask for 
concurrency here



• Could we use unsafePerformIO?

• we could do caching this way, but not concurrency.  
Execution will stop at the first data fetch.

length (intersect (friendsOf x) (friendsOf y))

friendsOf = unsafePerformIO ( .. )



Central problem

• Reorder execution of an expression to perform data 
fetching optimally.

• The programming model has no side effects (other 
than reading)



What we would like to do:

• explore the expression along all branches to get a set of data 
fetches



What we would like to do:

• submit the data fetches



What we would like to do:

• wait for the responses



What we would like to do:

• now the computation is unblocked along multiple paths
• ... explore again
• collect the next batch of data fetches
• and so on

Round 0

Round 1

Round 2



• Facebook’s existing solution to this problem: FXL

• Lets you write

• And optimises the data fetching correctly.

• But it’s an interpreter, and works with an explicit 
representation of the computation graph.

Length(Intersect(FriendsOf(X),FriendsOf(Y)))



• We want to run compiled code for efficiency

• And take advantage of Haskell
• high quality implementation

• great libraries for writing business logic etc.

• So, how can we implement the right data fetching 
behaviour in a Haskell DSL?



Start with a concurrency monad

newtype Haxl a = Haxl { unHaxl :: Result a }

data Result a = Done a
| Blocked (Haxl a)

instance Monad Haxl where
return a = Haxl (Done a)
m >>= k = Haxl $
case unHaxl m of

Done a    -> unHaxl (k a)
Blocked r -> Blocked (r >>= k)
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newtype Haxl a = Haxl { unHaxl :: Result a }

data Result a = Done a
| Blocked (Haxl a)

instance Monad Haxl where
return a = Haxl (Done a)
m >>= k = Haxl $
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Blocked r -> Blocked (r >>= k)

It’s a 
Free 

Monad



• The concurrency monad lets us run a computation 
until it blocks, do something, then resume it

• But we need to know what it blocked on...

• Could add some info to the Blocked constructor



newtype Haxl a = Haxl { unHaxl :: Responses -> Result a }

data Result a = Done a
| Blocked Requests (Haxl a)

instance Monad Haxl where
return a = Haxl $ \_ -> Done a
Haxl m >>= k = Haxl $ \resps ->
case m resps of
Done a         -> unHaxl (k a) resps
Blocked reqs r -> Blocked reqs (r >>= k)

addRequest :: Request a -> Requests -> Requests
emptyRequests :: Requests

fetchResponse :: Request a -> Responses -> a

dataFetch :: Request a -> Haxl a
dataFetch req = Haxl $ \_ ->
Blocked (addRequest req emptyRequests) $ Haxl $ \resps ->
Done (fetchResponse req resps)



• Ok so far, but we still get blocked at the first data 
fetch.

numCommonFriends x y = do
fx <- friendsOf x
fy <- friendsOf y
return (length (intersect fx fy))

Blocked here



• To explore multiple branches, we need to use Applicative

instance Applicative Haxl where

pure = return

Haxl f <*> Haxl a = Haxl $ \resps ->
case f resps of

Done f' ->
case a resps of
Done a'         -> Done (f' a')
Blocked reqs a' -> Blocked reqs (f' <$> a')

Blocked reqs f' ->
case a resps of
Done a'          -> Blocked reqs (f' <*> return a')
Blocked reqs' a' -> Blocked (reqs <> reqs') (f' <*> a')

<*> :: Applicative f => f (a -> b) -> f a -> f b



• This is precisely the advantage of Applicative over 
Monad: 
• Applicative allows exploration of the structure of the 

computation

• Our example is now written:

• Or:

numCommonFriends x y = 
length <$> (intersect <$> friendsOf x <*> friendsOf y)

numCommonFriends x y = 
length <$> common (friendsOf x) (friendsOf y)
where common = liftA2 intersect



• Note that we still have the Monad!

• The Monad allows us to make decisions based on 
values when we need to.

• Batching will not explore the then/else branches
• exactly what we want.

do
fs <- friendsOf x
if simon `elem` fs

then ...
else ...

Blocked here



• But it does mean the programmer should use 
Applicative composition to get batching.

• This is suboptimal:

• So our plan is to 
• provide APIs that batch correctly

• translate do-notation into Applicative where possible
• (forthcoming GHC extension)

do
fx <- friendsOf x
fy <- friendsOf y
return (length (intersect fx fy))



• We really want bulk operations to benefit from 
batching.

• But this doesn’t work: mapM uses Monad rather 
than Applicative composition.

• This is why traverse exists:

• So in our library, we make mapM = traverse

• Also: sequence = sequenceA

• Will be fixed once Applicative is a superclass of 
Monad

traverse :: (Traversable t, Applicative f) 
=> (a -> f b) -> t a -> f (t b)

friendsOfFriends id = 
concat <$> (mapM friendsOf =<< friendsOf id)



Implementation

• DataSource abstraction

• Replaying requests

• Scaling

• Hot-code swapping

• Experience

• Status etc.



Data Source Abstraction

• We want to structure the system like this:

• Core code includes the monad, caching support etc.

• Core is generic: no data sources built-in

Core

TAO

Memcache

other 
service...

Data sources



How do we arrange this?

• Three ways that a data source interacts with core:
• issuing a data fetch request

• persistent state

• fetching the data

• Package this up in a type class

• Let’s look at requests first...

class DataSource req where
...

parameterised 
over the type of  

requests



Example Request type

• Core has a single way to issue a request

• Note how the result type matches up.

data ExampleReq a where
CountAardvarks :: String -> ExampleReq Int
ListWombats :: Id     -> ExampleReq [Id]
deriving Typeable

it’s a GADT, where the type 
parameter is the type of 
the result of this request

dataFetch :: DataSource req => req a -> Haxl a



• Clean data source abstraction

• Means that we can plug in any set of data sources 
at runtime
• e.g. mock data sources for testing and experimentation

• core code can be built & tested independently



Replayability

• The Haxl monad and the type system give us:
• Guarantee of no side effects, except via dataFetch

• Guarantee that everything is cached

• The ability to replay requests...



user code



user code Haxl Core



user code Haxl Core data 
sources
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user code Haxl Core data 
sources

Cache

• The data sources change over time

• But if we persist the cache, we can re-run the user code and 
get the same results

• Great for 
• testing
• fault diagnosis
• profiling



Scaling
• Each server has lots of cores, pounded by requests 

from other boxes constantly.



Hot code swapping

• 1-2K machines, new code pushed many times per 
day

• Use GHC’s built-in linker
• Had to modify it to unload code

• GC detects when it is safe to release old code

• We can swap in new code while requests are still 
running on the old code



Status

• Prototyped most features (including hot code 
swapping & scaling)

• Core is written

• We have a few data sources, more in the works

• Busy hooking it up to the infrastructure

• Can play around with the system in GHCi, including 
data sources



Questions?


