The Haxl Project at
Facebook

Simon Marlow
Jon Coens
Louis Brandy
Jon Purdy
& others

Databases

Other
back-end
services

Use case: fighting spam

Is this thing
spam?
Databases

Other
back-end
services

Use case: fighting spam

Site-integrity engineers

push new rules
hundreds of
times per day
Databases

PR

Other
back-end
services

Data dependencies in a computation database

thrift

memcache

/C

" 9000

«e

‘ database
* abstraction ‘ thrift
 modularity

‘ memcache

Code wants to be structured hierarchically

(1(((? _ \b (&C
0

‘ database
* abstraction ‘ thrift
 modularity

‘ memcache

Code wants to be structured hierarchically

(l(((? o \b (&C
X

Code wants to be structured hierarchically ‘ database

‘ thrift
‘ memcache

e abstraction
* modularity

Code wants to be structured hierarchically ‘ database

‘ thrift
‘ memcache

e abstraction
* modularity

Execution wants to be structured horizontally

‘ database

e Overlap multiple requests o
e Batch requests to the same data source
* Cache multiple requests for the same data
‘ memcache

@ © o @
N

 Furthermore, each data source has different
characteristics
* Batch request API?
* Sync or async API?

* Set up a new connection for each request, or keep a
pool of connections around?

* Want to abstract away from all of this in the
business logic layer

But we know how to do this!

But we know how to do this!

* Concurrency.

Threads let us keep our abstractions & modularity while
executing things at the same time.

* Caching/batching can be implemented as a service in
the process

e as we do with the IO manager in GHC

But we know how to do this!

* Concurrency.

Threads let us keep our abstractions & modularity while
executing things at the same time.

* Caching/batching can be implemented as a service in the
process

e as we do with the 10 manager in GHC

e But concurrency (the programing model) isn’t what we
want here.

But we know how to do this!

* Concurrency.

Threads let us keep our abstractions & modularity while
executing things at the same time.

* Caching/batching can be implemented as a service in
the process

e as we do with the IO manager in GHC

* But concurrency (the programing model) isn’t what
we want here.

* Example...

* X and y are Facebook users

* suppose we want to compute the number of
friends that x and y have in common

e simplest way to write this:

length (intersect (friendsOf x) (friendsOf y))

Brief detour: TAO

* TAO implements Facebook’s data model
* most important data source we need to deal with

e Data is a graph
* Nodes are “objects”, identified by 64-bit ID
* Edges are “assocs” (directed; a pair of 64-bit IDs)

* Objects and assocs have a type
* object fields determined by the type

* Basic operations:
e Get the object with a given ID
* Get the assocs of a given type from a given ID

FRIENDS

* Back to our example

length (intersect (friendsOf x) (friendsOf y))

* (friendsOf x) makes a request to TAO to get all the
IDs for which there is an assoc of type FRIEND (x,).

* TAO has a multi-get API; very important that we
submit (friendsOf x) and (friendsOf y) as a single
operation.

Using concurrency

e This:

length (intersect (friendsOf x) (friendsOf y))

Using concurrency

e This:

length (intersect (friendsOf x) (friendsOf y))

e Becomes this:

ml <- newEmptyMVar
m2 <- newEmptyMVar
forkIO (friendsOf x >>= putMvVar ml)

forkIO (friendsOf y >>= putMvVar m2)
fx <- takeMVar ml

fy <- takeMVar m2

return (length (intersect fx fy))

e Using the async package:

ax <- async (friendsOf x)
ay <- async (friendsOf y)

fx <- wait ax
fy <- wait ay
return (length (intersect fx fy))

* Using Control.Concurrent.Async.concurrently:

do
(fx,fy) <- concurrently (friendsOf x) (friendsOf y)

return (length (intersect fx fy))

Why not concurrency?

* friendsOf x and friendsOf y are
* obviously independent
e obviously both needed
* “pure”

Why not concurrency?

* friendsOf x and friendsOf y are
* obviously independent
e obviously both needed
* “pure”

e Caching is not just an optimisation:

* if friendsOf x is requested twice, we must get the same
answer both times

* caching is a requirement

Why not concurrency?

* friendsOf x and friendsOf y are
* obviously independent
e obviously both needed
* “pure”

e Caching is not just an optimisation:

* if friendsOf x is requested twice, we must get the same
answer both times

* caching is a requirement

 we don’t want the programmer to have to ask for
concurrency here

* Could we use unsafePerformlO?

length (intersect (friendsOf x) (friendsOf y))

friendsOf = unsafePerformIO (..)

* we could do caching this way, but not concurrency.
Execution will stop at the first data fetch.

Central problem

* Reorder execution of an expression to perform data
fetching optimally.

* The programming model has no side effects (other
than reading)

What we would like to do:

* explore the expression along all branches to get a set of data
fetches

(l(((? @ \b (&C
0

What we would like to do:
® B
® B

 submit the data fetches

(1(((? @ \b (&C
0

What we would like to do:
o B
@® B

* wait for the responses

(1(((? @ \b (&C
0

What we would like to do:

* now the computation is unblocked along multiple paths
e ...explore again

collect the next batch of data fetches

* andsoon

‘ Round O
«‘ Round 1

« Round 2

a4 © ¢
0

Fighting spam with pure functions v ;o |
By Liokis Braiidy on Thursday, 24 Jansary 2013 o 173 | A | Facebook Engineering
é' : %

Like any popular Internet site, Facebook is a target for abuse. Our Site Integrity engineers
rely on FXL, a domain-specific language forged in the fires of spam fighting at Facebook, to

* Facebook’s existing solution to this problem: FXL
* Lets you write

Length(Intersect(FriendsOf(X),FriendsOf(Y)))

* And optimises the data fetching correctly.

e But it’s an interpreter, and works with an explicit
representation of the computation graph.

D |

* We want to run compiled code for efficiency

* And take advantage of Haskell
* high quality implementation
e great libraries for writing business logic etc.

* So, how can we implement the right data fetching
behaviour in a Haskell DSL?

Start with a concurrency monad

newtype Haxl a = Haxl { unHaxl :: Result a }

data Result a = Done a
| Blocked (Haxl a)

instance Monad Haxl where
return a = Haxl (Done a)
m >>= k = Haxl $
case unHaxl m of
Done a -> unHax1l (k a)
Blocked r -> Blocked (r >>= k)

Start with a concurrency monad

newtype Haxl a = Haxl { unHaxl :: Result a }

data Result a = Done a
| Blocked (Haxl a)

instance Monad Haxl where
return a = Haxl (Done a)
m >>= k = Haxl $
case unHaxl m of
Done a -> unHax1l (k a)
Blocked r -> Blocked (r >>= k)

* The concurrency monad lets us run a computation
until it blocks, do something, then resume it

e But we need to know what it blocked on...
 Could add some info to the Blocked constructor

newtype Haxl a = Haxl { unHaxl :: Responses -> Result a }

data Result a = Done a
| Blocked Requests (Haxl a)

instance Monad Haxl where
return a = Haxl1 $ _ -> Done a
Haxl m >>= k = Haxl $ \resps ->
case m resps of
Done a -> unHaxl (k a) resps
Blocked regs r -> Blocked reqs (r >>= k)

addRequest :: Request a -> Requests -> Requests
emptyRequests :: Requests

fetchResponse :: Request a -> Responses -> a

dataFetch :: Request a -> Haxl a
dataFetch req = Haxl $ _ -»>
Blocked (addRequest req emptyRequests) $ Haxl $ \resps ->
Done (fetchResponse req resps)

* Ok so far, but we still get blocked at the first data
fetch.

numCommonFriends x y = do Blocked here
fx <- friendsOf x

fy <- friendsOf y
return (length (intersect fx fy))

* To explore multiple branches, we need to use Applicative

instance Applicative Haxl where

pure = return

Haxl f <*> Haxl a = Haxl $ \resps ->
case f resps of
Done f' ->
case a resps of
Done a' -> Done (f' a')
Blocked regs a' -> Blocked regs (f' <$> a')
Blocked reqs ' ->
case a resps of
Done a' -> Blocked regs (f' <*> return a')
Blocked regqs' a' -> Blocked (reqs <> regs') (f' <*> a')

* This is precisely the advantage of Applicative over
Monad:

* Applicative allows exploration of the structure of the
computation

* Our example is now written:

numCommonFriends x y =
length <$> (intersect <$> friendsOf x <*> friendsOf y)

numCommonFriends x y =
length <$> common (friendsOf x) (friendsOf y)
where common = 1liftA2 intersect

* Note that we still have the Monad!

* The Monad allows us to make decisions based on
values when we need to.

do Blocked here
fs <- friendsOf x

if simon "elem fs

then ...
else ...

» Batching will not explore the then/else branches
e exactly what we want.

e But it does mean the programmer should use
Applicative composition to get batching.

* This is suboptimal:

do
fx <- friendsOf x

fy <- friendsOf y
return (length (intersect fx fy))

e So our planisto
* provide APIs that batch correctly

 translate do-notation into Applicative where possible
e (forthcoming GHC extension)

* We really want bulk operations to benefit from
batching.

friendsOfFriends id =

concat <$> (mapM friendsOf =<< friendsOf id)

e But this doesn’t work: mapM uses Monad rather
than Applicative composition.

* This is why traverse exists:

traverse :: (Traversable t, Applicative f)

=> (a -> fb) ->t a->Ff (tb)

* So in our library, we make mapM = traverse
* Also: sequence = sequenceA

* Will be fixed once Applicative is a superclass of
Monad

Implementation

* DataSource abstraction
* Replaying requests

* Scaling

* Hot-code swapping

* Experience
e Status etc.

Data Source Abstraction

* We want to structure the system like this:

Data sources

h

other
servme

* Core code includes the monad, caching support etc.
* Core is generic: no data sources built-in

How do we arrange this?

* Three ways that a data source interacts with core:
* issuing a data fetch request
* persistent state
* fetching the data

* Package this up in a type class

class DataSource req where

* Let’s look at requests first...

Example Request type

data ExampleReqg a where
CountAardvarks :: String -> ExampleReq Int
ListWombats :: Id -> ExampleReq [Id]
deriving Typeable

* Core has a single way to issue a request

dataFetch :: DataSource req => req a -> Haxl a

* Note how the result type matches up.

* Clean data source abstraction

* Means that we can plug in any set of data sources
at runtime
e e.g. mock data sources for testing and experimentation
e core code can be built & tested independently

Replayability

* The Haxl monad and the type system give us:
e Guarantee of no side effects, except via dataFetch
e Guarantee that everything is cached
* The ability to replay requests...

* The data sources change over time

* But if we persist the cache, we can re-run the user code and
get the same results

e Great for
* testing
 fault diagnosis
e profiling

Scaling

* Each server has lots of cores, pounded by requests
from other boxes constantly.

ComplexIO Scaling "+RTS -N6 -A32m"

25
Num Threads

Hot code swapping

e 1-2K machines, new code pushed many times per
day

e Use GHC’s built-in linker

* Had to modify it to unload code
e GC detects when it is safe to release old code

* We can swap in new code while requests are still
running on the old code

Status

* Prototyped most features (including hot code
swapping & scaling)

* Core is written
 We have a few data sources, more in the works
* Busy hooking it up to the infrastructure

* Can play around with the system in GHCi, including
data sources

Questions?

