
The Haxl Project at
Facebook

Simon Marlow
Jon Coens

Louis Brandy
Jon Purdy
& others

Business
Logic

service API

Databases

Other
back-end
services

Use case: fighting spam

Business
Logic

Databases

Other
back-end
services

www (PHP)

Is this thing
spam?

YES/NO

Use case: fighting spam

Business
Logic

Databases

Other
back-end
services

www (PHP)

Site-integrity engineers

push new rules
hundreds of
times per day

Data dependencies in a computation database

thrift

memcache

Code wants to be structured hierarchically

• abstraction
• modularity

database

thrift

memcache

Code wants to be structured hierarchically

• abstraction
• modularity

database

thrift

memcache

Code wants to be structured hierarchically

• abstraction
• modularity

database

thrift

memcache

Code wants to be structured hierarchically

• abstraction
• modularity

database

thrift

memcache

Execution wants to be structured horizontally

• Overlap multiple requests
• Batch requests to the same data source
• Cache multiple requests for the same data

database

thrift

memcache

• Furthermore, each data source has different
characteristics
• Batch request API?

• Sync or async API?

• Set up a new connection for each request, or keep a
pool of connections around?

• Want to abstract away from all of this in the
business logic layer

But we know how to do this!

But we know how to do this!

• Concurrency.
Threads let us keep our abstractions & modularity while
executing things at the same time.

• Caching/batching can be implemented as a service in
the process
• as we do with the IO manager in GHC

But we know how to do this!

• Concurrency.
Threads let us keep our abstractions & modularity while
executing things at the same time.

• Caching/batching can be implemented as a service in the
process
• as we do with the IO manager in GHC

• But concurrency (the programing model) isn’t what we
want here.

But we know how to do this!

• Concurrency.
Threads let us keep our abstractions & modularity while
executing things at the same time.

• Caching/batching can be implemented as a service in
the process
• as we do with the IO manager in GHC

• But concurrency (the programing model) isn’t what
we want here.

• Example...

• x and y are Facebook users

• suppose we want to compute the number of
friends that x and y have in common

• simplest way to write this:

length (intersect (friendsOf x) (friendsOf y))

Brief detour: TAO
• TAO implements Facebook’s data model

• most important data source we need to deal with

• Data is a graph
• Nodes are “objects”, identified by 64-bit ID
• Edges are “assocs” (directed; a pair of 64-bit IDs)

• Objects and assocs have a type
• object fields determined by the type

• Basic operations:
• Get the object with a given ID
• Get the assocs of a given type from a given ID

User A

User B

User C

User D

FRIENDS

• Back to our example

length (intersect (friendsOf x) (friendsOf y))

• (friendsOf x) makes a request to TAO to get all the
IDs for which there is an assoc of type FRIEND (x,_).

• TAO has a multi-get API; very important that we
submit (friendsOf x) and (friendsOf y) as a single
operation.

Using concurrency

• This:

length (intersect (friendsOf x) (friendsOf y))

Using concurrency

• This:

• Becomes this:

length (intersect (friendsOf x) (friendsOf y))

do
m1 <- newEmptyMVar
m2 <- newEmptyMVar
forkIO (friendsOf x >>= putMVar m1)
forkIO (friendsOf y >>= putMVar m2)
fx <- takeMVar m1
fy <- takeMVar m2
return (length (intersect fx fy))

• Using the async package:

do
ax <- async (friendsOf x)
ay <- async (friendsOf y)
fx <- wait ax
fy <- wait ay
return (length (intersect fx fy))

• Using Control.Concurrent.Async.concurrently:

do
(fx,fy) <- concurrently (friendsOf x) (friendsOf y)
return (length (intersect fx fy))

Why not concurrency?

• friendsOf x and friendsOf y are
• obviously independent
• obviously both needed
• “pure”

Why not concurrency?

• friendsOf x and friendsOf y are
• obviously independent
• obviously both needed
• “pure”

• Caching is not just an optimisation:
• if friendsOf x is requested twice, we must get the same

answer both times
• caching is a requirement

Why not concurrency?

• friendsOf x and friendsOf y are
• obviously independent
• obviously both needed
• “pure”

• Caching is not just an optimisation:
• if friendsOf x is requested twice, we must get the same

answer both times
• caching is a requirement

• we don’t want the programmer to have to ask for
concurrency here

• Could we use unsafePerformIO?

• we could do caching this way, but not concurrency.
Execution will stop at the first data fetch.

length (intersect (friendsOf x) (friendsOf y))

friendsOf = unsafePerformIO (..)

Central problem

• Reorder execution of an expression to perform data
fetching optimally.

• The programming model has no side effects (other
than reading)

What we would like to do:

• explore the expression along all branches to get a set of data
fetches

What we would like to do:

• submit the data fetches

What we would like to do:

• wait for the responses

What we would like to do:

• now the computation is unblocked along multiple paths
• ... explore again
• collect the next batch of data fetches
• and so on

Round 0

Round 1

Round 2

• Facebook’s existing solution to this problem: FXL

• Lets you write

• And optimises the data fetching correctly.

• But it’s an interpreter, and works with an explicit
representation of the computation graph.

Length(Intersect(FriendsOf(X),FriendsOf(Y)))

• We want to run compiled code for efficiency

• And take advantage of Haskell
• high quality implementation

• great libraries for writing business logic etc.

• So, how can we implement the right data fetching
behaviour in a Haskell DSL?

Start with a concurrency monad

newtype Haxl a = Haxl { unHaxl :: Result a }

data Result a = Done a
| Blocked (Haxl a)

instance Monad Haxl where
return a = Haxl (Done a)
m >>= k = Haxl $
case unHaxl m of

Done a -> unHaxl (k a)
Blocked r -> Blocked (r >>= k)

Start with a concurrency monad

newtype Haxl a = Haxl { unHaxl :: Result a }

data Result a = Done a
| Blocked (Haxl a)

instance Monad Haxl where
return a = Haxl (Done a)
m >>= k = Haxl $
case unHaxl m of

Done a -> unHaxl (k a)
Blocked r -> Blocked (r >>= k)

It’s a
Free

Monad

• The concurrency monad lets us run a computation
until it blocks, do something, then resume it

• But we need to know what it blocked on...

• Could add some info to the Blocked constructor

newtype Haxl a = Haxl { unHaxl :: Responses -> Result a }

data Result a = Done a
| Blocked Requests (Haxl a)

instance Monad Haxl where
return a = Haxl $ _ -> Done a
Haxl m >>= k = Haxl $ \resps ->
case m resps of
Done a -> unHaxl (k a) resps
Blocked reqs r -> Blocked reqs (r >>= k)

addRequest :: Request a -> Requests -> Requests
emptyRequests :: Requests

fetchResponse :: Request a -> Responses -> a

dataFetch :: Request a -> Haxl a
dataFetch req = Haxl $ _ ->
Blocked (addRequest req emptyRequests) $ Haxl $ \resps ->
Done (fetchResponse req resps)

• Ok so far, but we still get blocked at the first data
fetch.

numCommonFriends x y = do
fx <- friendsOf x
fy <- friendsOf y
return (length (intersect fx fy))

Blocked here

• To explore multiple branches, we need to use Applicative

instance Applicative Haxl where

pure = return

Haxl f <*> Haxl a = Haxl $ \resps ->
case f resps of

Done f' ->
case a resps of
Done a' -> Done (f' a')
Blocked reqs a' -> Blocked reqs (f' <$> a')

Blocked reqs f' ->
case a resps of
Done a' -> Blocked reqs (f' <*> return a')
Blocked reqs' a' -> Blocked (reqs <> reqs') (f' <*> a')

<*> :: Applicative f => f (a -> b) -> f a -> f b

• This is precisely the advantage of Applicative over
Monad:
• Applicative allows exploration of the structure of the

computation

• Our example is now written:

• Or:

numCommonFriends x y =
length <$> (intersect <$> friendsOf x <*> friendsOf y)

numCommonFriends x y =
length <$> common (friendsOf x) (friendsOf y)
where common = liftA2 intersect

• Note that we still have the Monad!

• The Monad allows us to make decisions based on
values when we need to.

• Batching will not explore the then/else branches
• exactly what we want.

do
fs <- friendsOf x
if simon `elem` fs

then ...
else ...

Blocked here

• But it does mean the programmer should use
Applicative composition to get batching.

• This is suboptimal:

• So our plan is to
• provide APIs that batch correctly

• translate do-notation into Applicative where possible
• (forthcoming GHC extension)

do
fx <- friendsOf x
fy <- friendsOf y
return (length (intersect fx fy))

• We really want bulk operations to benefit from
batching.

• But this doesn’t work: mapM uses Monad rather
than Applicative composition.

• This is why traverse exists:

• So in our library, we make mapM = traverse

• Also: sequence = sequenceA

• Will be fixed once Applicative is a superclass of
Monad

traverse :: (Traversable t, Applicative f)
=> (a -> f b) -> t a -> f (t b)

friendsOfFriends id =
concat <$> (mapM friendsOf =<< friendsOf id)

Implementation

• DataSource abstraction

• Replaying requests

• Scaling

• Hot-code swapping

• Experience

• Status etc.

Data Source Abstraction

• We want to structure the system like this:

• Core code includes the monad, caching support etc.

• Core is generic: no data sources built-in

Core

TAO

Memcache

other
service...

Data sources

How do we arrange this?

• Three ways that a data source interacts with core:
• issuing a data fetch request

• persistent state

• fetching the data

• Package this up in a type class

• Let’s look at requests first...

class DataSource req where
...

parameterised
over the type of

requests

Example Request type

• Core has a single way to issue a request

• Note how the result type matches up.

data ExampleReq a where
CountAardvarks :: String -> ExampleReq Int
ListWombats :: Id -> ExampleReq [Id]
deriving Typeable

it’s a GADT, where the type
parameter is the type of
the result of this request

dataFetch :: DataSource req => req a -> Haxl a

• Clean data source abstraction

• Means that we can plug in any set of data sources
at runtime
• e.g. mock data sources for testing and experimentation

• core code can be built & tested independently

Replayability

• The Haxl monad and the type system give us:
• Guarantee of no side effects, except via dataFetch

• Guarantee that everything is cached

• The ability to replay requests...

user code

user code Haxl Core

user code Haxl Core data
sources

user code Haxl Core data
sources

Cache

user code Haxl Core data
sources

Cache

user code Haxl Core data
sources

Cache

user code Haxl Core data
sources

Cache

user code Haxl Core data
sources

Cache

• The data sources change over time

• But if we persist the cache, we can re-run the user code and
get the same results

• Great for
• testing
• fault diagnosis
• profiling

Scaling
• Each server has lots of cores, pounded by requests

from other boxes constantly.

Hot code swapping

• 1-2K machines, new code pushed many times per
day

• Use GHC’s built-in linker
• Had to modify it to unload code

• GC detects when it is safe to release old code

• We can swap in new code while requests are still
running on the old code

Status

• Prototyped most features (including hot code
swapping & scaling)

• Core is written

• We have a few data sources, more in the works

• Busy hooking it up to the infrastructure

• Can play around with the system in GHCi, including
data sources

Questions?

