Programming up to Congruence

Vilhelm Sjoberg and Stephanie Weirich

University of Pennsylvania

October 14, 2013

WG 2.8 Aussois, France

PENN

\%

FP + dependent types

What does this mean?

Goal

A functional programming language with an expressive type
system, with extended capabilities for “lightweight” verification

Requirements:

e Core language for functional programming (including
nontermination)

o Full-spectrum dependency
e Erasable arguments (both types and values)
e Extrinsic semantics (type annotations don’t matter)

Nongoal: mathematical foundations, full program verification

Plan of attack

© Design explicitly-typed core language that defines the
semantics. (Like FC, core language has explicit type
coercions.)

© Design a declarative specification of a surface language,
which specifies what type annotations and coercions can be
omitted.

e Bidirectional type checking
e Congruence closure
@ Figure out how to implement the declarative system
through elaboration into the core language.

Core language

Core language

expressions a,b,c, A,B = Type| z | rec fa.v
(z:A) — B | Azg.a|abd
| a=b|join, | asy | ...

coercion o

Type annotations are optional, ignored by operational
semantics, and removed by |a| notation.

e “Call-by-value Cayenne”
e Fragment of [Sjoberg et al., MSFP’12], which is in turn a
fragment of ZOMBIE core [Casinghino et al. POPL’14]

Type system

I'Fa:A

v AeT
=N T

I'F Type : Type F'kFz:A

If:AFv:A T'F A:Type
Ais (z: A1) — As
I'krecfygv: A

I'a:A— B
'Eb: A

I'Fab:B

'a:A THb:B
I'a="5:Type

I'H A: Type
I'x: AF B : Type
' (z:A) — B: Type

x:AFb:B
'tAzg.b:(z:A)— B

'Fa:(z:A)— B
'ov:A

'Fav:{v/z}B

I'tra:A T'Fv:A=1B
I'- B : Type

I'aw,:B

When are expressions equal?

@ When they evaluate the same way

|a] &y, b Wzbv o/ Thka=b:Type

I'F join ta=1»

chvij:a‘:b :

When are expressions equal?

@ When they evaluate the same way

|a] &y, b Wzbv o/ Thka=b:Type
TF join p—

~repytjia=b *

@ When their subcomponents are equal (congruence)

I'Fwj:a = bjj '+ {aj/wj}j c= {bj/xj}j c: Type

't join——; {aj/17j}j ¢ = {bj/xj}j ¢
{~vj/z} ¢

When are expressions equal?

@ When they evaluate the same way

|a] &y, b Wzbv o/ Thka=b:Type

T+ join

chvij:a‘:b Fa= b

@ When their subcomponents are equal (congruence)

I'Fwj:a = bjj '+ {aj/wj}j c= {bj/xj}j c: Type

't join——; {aj/17j}j ¢ = {bj/xj}j ¢
{~vj/z} ¢

o Reflexivity, symmetry and transitivity are derivable

I'Fv:a=15%

“kmebMom

I' F join cb=ua

~v=b

Surface language

Inferring A annotations: Bidirectional type system

Can we infer type annotations, such as rec f4.a and Az4.a 7

z:Ael I'z:A+-b< B
'-z=4 'FXz.a<=(z:A)— B
' A < Type
'a= (z:4) — B If:AFv<«< A
'~v<«< A4 A= (z:41) = Ay
'Fav={v/z}B F'Frecfv<=A
'ra<=A '-a= A

N'-ag = A F'Fa<=A

Inferring proofs

Can we infer conversion proofs, such as v in ay, 7

Coq, Agda, Cayenne, etc check types “up to S-convertibility”

I'Fa:A A~*C B~*(C
I'ta:B

Not so good for nontermination!

Inferring proofs

Can we infer conversion proofs, such as v in ay, 7

Coq, Agda, Cayenne, etc check types “up to S-convertibility”

I'Fa:A A~*C B~*(C
I'ta:B

Not so good for nontermination!

Our proposal: check and infer “up-to congruence closure”

I'Fa=A TEJ|A=|B| T'F B« Type
I'a= 1B

'ra< A TE|A =|B| T'F A<« Type
I'a<B

(Erased) Congruence Closure

'Ea=1b
'Fa:A F'ra=19 F'eb=c
I'Fa=a 'Eb=a 'Fa=c
F}Zai:bii.
Fl—{ai/xi}%c:A
z:a=bel T+ {b/z} c:B
PFa=b Tk {a/n} c={b/z]} c

(We will add a few more rules in the rest of the talk)

But can we implement it?

@ Algorithm to decide I' E a = b7
Create a Union-Find structure of all subterms. Go through
the given equations, adding links until nothing changes.

o Optimized algorithm is O(nlogn) [Downey-Sethi-Tarjan
1980).

© When should the typechecker call the CC algorithm?
Inline the conversion rules to create a syntax-directed
system.

I'a=d: 4

P A= (z:A) = B~y

v <A~
F'_)avj(abwm (zA) ~>B) {IU//:E}B

Challenges

Spoiler: dependent types makes things more difficult.

Injectivity

The algorithmic typing rule for application, first try:

F'—a= A

=4 =(z:4) — B

F—=v<«< A
I'—av={v/z}B

One worry: what if a can be assigned multiple arrow types?
E.g., suppose

I' E (Nat — Nat) = (Bool — Nat)

Should we check v against Nat or Bool?

Injectivity for arrow domains
The problem only comes up if ' E (z:A) - B=(2:A") » B
but not 'E A = A"

We avoid this by including injectivity in the core language and
the CC algorithm:

F'v:((z:A1) = B1) = ((z:A3) — Bs9)
I‘l—join :A1:A2

injdom v

I'E ((IEAl) — Bl) = ((IEAQ) — BQ)
' A = A

o Mildly controversial—e.g. Semantically we have
(Nat — Void) = (Bool — Void).

o But we already need injectivity to prove type preservation
for the core language.

Injectivity for arrow codomains?

Similarly, we are in trouble if I' F (z: A) - B’ = (z:A) — B
but not I' E {v/z}B = {v/z}B'.

Can we use the same trick? The core language injectivity rule is

type safe.

v :((z:A)— B)=((z:A) = Bs) TkFw:A
r I_J'Oininjrngvl vy {7}2/‘77}31 = {UQ/:I:}BQ

But it makes the equational theory undecidable! So we cannot
addittoI'E A= B.

Injectivity for arrow codomains?

Solution: add a restriction to the declarative type system

'ra=(z:4) — B

'~v<«< A4

I'E injmg(z:A) - B
'av={v/z}B

where ' E injrg (z: A) — B means, for all B,
I'E((z:A)— B)=((z:A) — B') impliesT,z: AF B= B’

and check that restriction in the elaboration algorithm.

Equalities between equalities

In a dependently-typed language, we can have equations
between equations.

We want the congruence closure relation to be stable under
congruence closure. E.g.

hi:(zx=y)=a, hy:x=y Fx=y

hi:(zr=y)=a, hy:a Fr=y

Equalities between equalities

In a dependently-typed language, we can have equations
between equations.

We want the congruence closure relation to be stable under
congruence closure. E.g.

hi:(zx=y)=a, hy:x=y Fx=y
hi:(zr=y)=a, hy:a Frx=y

Solution: strengthen the assumption rule.

x:Ael
z:a=bel kA= (a=0)
''ra=19 ''Fa=1b

Typed Congruence Closure

The untyped congruence closure algorithm generates (untyped)
proof terms along the way

p,q == x|refl|p~" | p;q|congapr..pi|inj; p

But not every p is a valid typed proof!

Typed Congruence Closure

The untyped congruence closure algorithm generates (untyped)
proof terms along the way

p,q == x|refl|p~" | p;q|congapr..pi|inj; p

But not every p is a valid typed proof!
Solution: simplify the proof

(cong A p1..pi);(cong a qi..qi) +— conga(pisqi)-..(p1;a)

When a proof is in normal form, all intermediate terms are
subterms of the wanted or the given equations, so they are
well-typed.

Current Status/Future Work

Current Status

e Core language is type sound [Sjoberg et al.,
MSFP’12][Casinghino et al. POPL ’14]

o Mostly implemented in the ZOMBIE typechecker

o Currently working on completeness proofs for algorithmic
type system and congruence closure algorithm

Future Work

o Reduction Modulo. Making join use congruence closure.
E.g., if we have h : = True in the context, step

if x then 1 else 2 ~>q,, 1

@ Unification Modulo. Given two terms a and b which
contain unification variables, find a substitution s such that

sI' E sa = sb

This problem (rigid E-unification) is decidable, but NP
complete.

Thanks!

Example program

rec minus_nn_zero : (n : Nat) — minus n n = O.
An : Nat.
case n [n_eq] of
Z — join [~ minus 0 O = 0]
> join [minus "n_eq “n_eq = 0]
Sm—
let p = minus_nn_zero m
in
join [minus (S m) (S m) = minus m m]
> join [minus "n_eq “n_eq = minus m m]
> join [minus n n = “p]

Example with inference

rec minus_nn_zero : (n : Nat) — minus n n = O.
An. -- infer domain type
case n [n_eq] of
Z — join [~ minus 0 O = 0]
-- infer conversion by n_eq
S m—
let p = minus_nn_zero m
in
join [minus (S m) (S m) = minus m m]
-- infer conversion by n_eq
-- and conversion by p

Erasure

| Type| = Type

|z =

[rec f4.a| = rec f.|al
|(z:A) — B| = (z:|4|) — |B]
|Az4.al = Az.|q|

la b = |a| [b]

la = b] = (lal =1b])
ljoin,| = refl

| @] = laf

Desired properties of Elaboration

Lemma (Soundness)
Q@ IfT—=a=d:A thenTFad : A
Q@ I[fT—a<« A~ a thenT'Fad : A
Q@ f[THA=B~uvthenl'Fv:A=DB

Lemma (Completeness)
Q@ I[fT-a= AthenT>a=ad : A
Q@ IfTFa<=AthenT =a<= A~ d
Q@ I[fTFA=B thenT'—=A=B ~wv

	FP + dependent types
	Core language
	Surface language
	Current Status/Future Work
	Thanks!

