
Programming up to Congruence

Vilhelm Sjöberg and Stephanie Weirich

University of Pennsylvania

October 14, 2013

WG 2.8 Aussois, France



FP + dependent types



What does this mean?

Goal

A functional programming language with an expressive type
system, with extended capabilities for “lightweight” verification

Requirements:

Core language for functional programming (including
nontermination)

Full-spectrum dependency

Erasable arguments (both types and values)

Extrinsic semantics (type annotations don’t matter)

Nongoal: mathematical foundations, full program verification



Plan of attack

1 Design explicitly-typed core language that defines the
semantics. (Like FC, core language has explicit type
coercions.)

2 Design a declarative specification of a surface language,
which specifies what type annotations and coercions can be
omitted.

Bidirectional type checking
Congruence closure

3 Figure out how to implement the declarative system
through elaboration into the core language.



Core language



Core language

expressions a, b, c, A,B ::= Type | x | rec fA.v
| (x :A) → B | λxA.a | a b
| a = b | joinσ | a.v | . . .

coercion σ ::= . . .

Type annotations are optional, ignored by operational
semantics, and removed by |a| notation.

“Call-by-value Cayenne”

Fragment of [Sjöberg et al., MSFP’12], which is in turn a
fragment of Zombie core [Casinghino et al. POPL’14]



Type system

Γ ` a : A

` Γ

Γ ` Type : Type

x : A ∈ Γ
` Γ

Γ ` x : A

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` (x :A) → B : Type

Γ, f : A ` v : A Γ ` A : Type
A is (x :A1) → A2

Γ ` rec fA.v : A

Γ, x : A ` b : B

Γ ` λxA.b : (x :A) → B

Γ ` a : A → B
Γ ` b : A

Γ ` a b : B

Γ ` a : (x :A) → B
Γ ` v : A

Γ ` a v : {v/x}B

Γ ` a : A Γ ` b : B

Γ ` a = b : Type

Γ ` a : A Γ ` v : A = B
Γ ` B : Type

Γ ` a.v : B



When are expressions equal?

When they evaluate the same way

|a| i
cbv a ′ |b| j

cbv a ′ Γ ` a = b : Type

Γ ` join cbvi j :a=b : a = b

When their subcomponents are equal (congruence)

Γ ` vj : aj = bj
j

Γ ` {aj /xj }
j

c = {bj /xj }
j

c : Type

Γ ` join
{∼vj /xj }

j
c

: {aj /xj }
j

c = {bj /xj }
j

c

Reflexivity, symmetry and transitivity are derivable

Γ ` v : a = b
Γ ` join cbvb=b.join∼v=b

: b = a



When are expressions equal?

When they evaluate the same way

|a| i
cbv a ′ |b| j

cbv a ′ Γ ` a = b : Type

Γ ` join cbvi j :a=b : a = b

When their subcomponents are equal (congruence)

Γ ` vj : aj = bj
j

Γ ` {aj /xj }
j

c = {bj /xj }
j

c : Type

Γ ` join
{∼vj /xj }

j
c

: {aj /xj }
j

c = {bj /xj }
j

c

Reflexivity, symmetry and transitivity are derivable

Γ ` v : a = b
Γ ` join cbvb=b.join∼v=b

: b = a



When are expressions equal?

When they evaluate the same way

|a| i
cbv a ′ |b| j

cbv a ′ Γ ` a = b : Type

Γ ` join cbvi j :a=b : a = b

When their subcomponents are equal (congruence)

Γ ` vj : aj = bj
j

Γ ` {aj /xj }
j

c = {bj /xj }
j

c : Type

Γ ` join
{∼vj /xj }

j
c

: {aj /xj }
j

c = {bj /xj }
j

c

Reflexivity, symmetry and transitivity are derivable

Γ ` v : a = b
Γ ` join cbvb=b.join∼v=b

: b = a



Surface language



Inferring λ annotations: Bidirectional type system

Can we infer type annotations, such as rec fA.a and λxA.a ?

Γ ` a ⇒ A Γ ` a ⇐ A

x : A ∈ Γ

Γ ` x ⇒ A

Γ, x : A ` b ⇐ B

Γ ` λx .a ⇐ (x :A) → B

Γ ` a ⇒ (x :A) → B
Γ ` v ⇐ A

Γ ` a v ⇒ {v/x}B

Γ ` A ⇐ Type
Γ, f : A ` v ⇐ A
A = (x :A1) → A2

Γ ` rec f .v ⇐ A

Γ ` a ⇐ A

Γ ` aA ⇒ A

Γ ` a ⇒ A

Γ ` a ⇐ A



Inferring proofs

Can we infer conversion proofs, such as v in a.v ?

Coq, Agda, Cayenne, etc check types “up to β-convertibility”

Γ ` a : A A ∗ C B  ∗ C

Γ ` a : B

Not so good for nontermination!

Our proposal: check and infer “up-to congruence closure”

Γ ` a ⇒ A Γ � |A| = |B | Γ ` B ⇐ Type

Γ ` a ⇒ B

Γ ` a ⇐ A Γ � |A| = |B | Γ ` A ⇐ Type

Γ ` a ⇐ B



Inferring proofs

Can we infer conversion proofs, such as v in a.v ?

Coq, Agda, Cayenne, etc check types “up to β-convertibility”

Γ ` a : A A ∗ C B  ∗ C

Γ ` a : B

Not so good for nontermination!

Our proposal: check and infer “up-to congruence closure”

Γ ` a ⇒ A Γ � |A| = |B | Γ ` B ⇐ Type

Γ ` a ⇒ B

Γ ` a ⇐ A Γ � |A| = |B | Γ ` A ⇐ Type

Γ ` a ⇐ B



(Erased) Congruence Closure

Γ ` a : A

Γ � a = a

Γ � a = b

Γ � b = a

Γ � a = b
Γ � b = c

Γ � a = c

x : a = b ∈ Γ

Γ � a = b

Γ � ai = bi
i

Γ ` {ai/xi}
i

c : A

Γ ` {bi/xi}
i

c : B

Γ � {ai/xi}
i

c = {bi/xi}
i

c

(We will add a few more rules in the rest of the talk)



But can we implement it?

1 Algorithm to decide Γ � a = b?
Create a Union-Find structure of all subterms. Go through
the given equations, adding links until nothing changes.

Optimized algorithm is O(n log n) [Downey-Sethi-Tarjan
1980].

2 When should the typechecker call the CC algorithm?
Inline the conversion rules to create a syntax-directed
system.

Γ →̀a ⇒ a ′ : A1

Γ →̀|A1| ⇒ (x : A) → B  v1
Γ →̀v ⇐ A v ′

Γ →̀a v ⇒ (a ′.∼v1:(x:A)→B ) v ′ : {v ′/x}B



Challenges

Spoiler: dependent types makes things more difficult.



Injectivity

The algorithmic typing rule for application, first try:

Γ →̀a ⇒ A′

Γ →̀|A′| = (x :A) → B
Γ →̀v ⇐ A

Γ →̀a v ⇒ {v/x}B

One worry: what if a can be assigned multiple arrow types?
E.g., suppose

Γ � (Nat → Nat) = (Bool → Nat)

Should we check v against Nat or Bool?



Injectivity for arrow domains

The problem only comes up if Γ � (x :A) → B = (x :A′) → B
but not Γ � A = A′.

We avoid this by including injectivity in the core language and
the CC algorithm:

Γ ` v : ((x :A1) → B1) = ((x :A2) → B2)

Γ ` joininjdom v : A1 = A2

Γ � ((x :A1) → B1) = ((x :A2) → B2)

Γ � A1 = A2

Mildly controversial—e.g. Semantically we have
(Nat → Void) = (Bool → Void).

But we already need injectivity to prove type preservation
for the core language.



Injectivity for arrow codomains?

Similarly, we are in trouble if Γ � (x :A) → B ′ = (x :A) → B
but not Γ � {v/x}B = {v/x}B ′.

Can we use the same trick? The core language injectivity rule is
type safe.

Γ ` v1 : ((x :A) → B1) = ((x :A) → B2) Γ ` v2 : A

Γ ` joininjrng v1 v2 : {v2/x}B1 = {v2/x}B2

But it makes the equational theory undecidable! So we cannot
add it to Γ � A = B .



Injectivity for arrow codomains?

Solution: add a restriction to the declarative type system

Γ ` a ⇒ (x :A) → B
Γ ` v ⇐ A
Γ � injrng (x :A) → B

Γ ` a v ⇒ {v/x}B

where Γ � injrng (x :A) → B means, for all B′,

Γ � ((x :A) → B) = ((x :A) → B ′) implies Γ, x : A � B = B ′

and check that restriction in the elaboration algorithm.



Equalities between equalities

In a dependently-typed language, we can have equations
between equations.

(x = y) = (2 = 2)

We want the congruence closure relation to be stable under
congruence closure. E.g.

h1 : (x = y) = a, h2 : x = y � x = y

h1 : (x = y) = a, h2 : a � x = y

Solution: strengthen the assumption rule.

x : a = b ∈ Γ

Γ � a = b

x : A ∈ Γ
Γ � A = (a = b)

Γ � a = b



Equalities between equalities

In a dependently-typed language, we can have equations
between equations.

(x = y) = (2 = 2)

We want the congruence closure relation to be stable under
congruence closure. E.g.

h1 : (x = y) = a, h2 : x = y � x = y

h1 : (x = y) = a, h2 : a � x = y

Solution: strengthen the assumption rule.

x : a = b ∈ Γ

Γ � a = b

x : A ∈ Γ
Γ � A = (a = b)

Γ � a = b



Typed Congruence Closure

The untyped congruence closure algorithm generates (untyped)
proof terms along the way

p, q ::= x | refl | p−1 | p; q | cong A p1 .. pi | inji p

But not every p is a valid typed proof!

Solution: simplify the proof

(cong A p1 .. pi); (cong A q1 .. qi) 7→ cong A (p1; q1) .. (p1; qi)

When a proof is in normal form, all intermediate terms are
subterms of the wanted or the given equations, so they are
well-typed.



Typed Congruence Closure

The untyped congruence closure algorithm generates (untyped)
proof terms along the way

p, q ::= x | refl | p−1 | p; q | cong A p1 .. pi | inji p

But not every p is a valid typed proof!
Solution: simplify the proof

(cong A p1 .. pi); (cong A q1 .. qi) 7→ cong A (p1; q1) .. (p1; qi)

When a proof is in normal form, all intermediate terms are
subterms of the wanted or the given equations, so they are
well-typed.



Current Status/Future Work



Current Status

Core language is type sound [Sjöberg et al.,
MSFP’12][Casinghino et al. POPL ’14]

Mostly implemented in the Zombie typechecker

Currently working on completeness proofs for algorithmic
type system and congruence closure algorithm



Future Work

Reduction Modulo. Making join use congruence closure.
E.g., if we have h : x = True in the context, step

if x then 1 else 2 cbv 1

Unification Modulo. Given two terms a and b which
contain unification variables, find a substitution s such that

sΓ � sa = sb

This problem (rigid E-unification) is decidable, but NP
complete.



Thanks!



Example program

rec minus_nn_zero : (n : Nat) → minus n n = 0.

λ n : Nat.

case n [n_eq] of

Z → join [ minus 0 0 = 0]

. join [minus ~n_eq ~n_eq = 0]

S m →
let p = minus_nn_zero m

in

join [ minus (S m) (S m) = minus m m]

. join [minus ~n_eq ~n_eq = minus m m]

. join [minus n n = ~p]



Example with inference

rec minus_nn_zero : (n : Nat) → minus n n = 0.

λ n. -- infer domain type

case n [n_eq] of

Z → join [ minus 0 0 = 0]

-- infer conversion by n_eq

S m →
let p = minus_nn_zero m

in

join [ minus (S m) (S m) = minus m m]

-- infer conversion by n_eq

-- and conversion by p



Erasure

|Type| = Type
|x | = x
|rec fA.a| = rec f .|a|
|(x :A) → B | = (x : |A|) → |B |
|λxA.a| = λx .|a|
|a b| = |a| |b|
|a = b| = (|a| = |b|)
|joinσ| = refl
|a.b | = |a|



Desired properties of Elaboration

Lemma (Soundness)

1 If Γ →̀a ⇒ a ′ : A′ then Γ ` a ′ : A′

2 If Γ →̀a ⇐ A′  a ′ then Γ ` a ′ : A′

3 If Γ →̀A = B  v then Γ ` v : A = B

Lemma (Completeness)

1 If Γ ` a ⇒ A then Γ →̀a ⇒ a ′ : A′

2 If Γ ` a ⇐ A then Γ →̀a ⇐ A′  a ′

3 If Γ ` A = B then Γ →̀A = B  v


	FP + dependent types
	Core language
	Surface language
	Current Status/Future Work
	Thanks!

