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Abstract

This paper presents a dependently-typed programming language
that uses an adaptation of a congruence closure algorithm for proof
and type inference. While most dependently-typed languages auto-
matically use equalities that follow from β-reductions but do not
automatically use known assumptions from the context, our lan-
guage does the opposite. It uses assumptions but does not automat-
ically reduce expressions.

Our work includes the specification of the language via a bidirec-
tional type system, which works “up-to-congruence,” and an algo-
rithm for elaborating expressions in this language to an explicitly
typed core language. We prove that our elaboration algorithm is
complete with respect to the source type system, and always pro-
duces well typed terms in the core language. This algorithm has
been implemented in the ZOMBIE language, which includes gen-
eral recursion, irrelevant arguments, heterogeneous equality and
datatypes.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords Dependent types; Congruence closure

1. Introduction

The ZOMBIE language aims to provide a smooth path from or-
dinary functional programming to dependently typed program-
ming [9]. However, one significant difference between Haskell and
Agda is that in the latter, programmers must show that every func-
tion terminates. Such proofs often require delicate reasoning, es-
pecially when they must be done in conjunction with the function
definition. In contrast, ZOMBIE includes arbitrary nontermination,
relying on the type system to track whether an expression has been
typechecked in the normalizing fragment of the language.

Prior work on ZOMBIE [9, 24] has focused on the metatheory of the
core language—type safety for the entire language and consistency
for the normalizing fragment—and provides a solid foundation.
However, it is not feasible to write programs directly in the core
language, because the terms get cluttered with type annotations and

[Copyright notice will appear here once ’preprint’ option is removed.]

type conversion proofs. This paper addresses the other half of the
design: crafting a programmer-friendly surface language, which
elaborates into the core.

The reason that elaboration is important in this context is that core
ZOMBIE has a weak definition of equivalence. Most dependently-
typed languages define terms to be equal when they are (at least)
β-convertible. However, the presence of nontermination makes this
definition awkward. To check whether two types are β-equivalent
the type checker has to evaluate expressions inside them, which be-
comes problematic if expressions may diverge—what if the type
checker gets stuck in an infinite loop? Existing languages fix an
arbitrary global cut off for how many steps of evaluation the type-
checker is willing to do (Cayenne [3]), or only reduce expressions
that have passed a conservative termination test (Idris [8]). Core
ZOMBIE, somewhat radically, omits automatic β-conversion com-
pletely. Instead, β-equality is available only through explicit con-
version.

Because ZOMBIE does not include automatic β-conversion, it pro-
vides an opportunity to explore an alternative definition of equiva-
lence in a surface language design.

Congruence closure, also known as the theory of equality with un-
interpreted function symbols, is a basic operation in automatic the-
orem provers for first-order logic (particularly SMT solvers, such
as Z3 [12]). Given some context Γ which contains assumptions of
the form a = b, the congruence closure of Γ is the set of equa-
tions which are deducible by reflexivity, symmetry, transitivity, and
changing subterms.

Although algorithms for congruence closure are well-known [14,
19, 23] this reasoning principle has seen little use in dependently-
typed programming languages. The problem is not lack of oppor-
tunity. Dependently-typed languages feature propositional equal-
ity, written a = b—a type whose inhabitants assert the equality
of the two expressions. The elimination form for this type coerces
its argument from type {a/x}A to type {b/x}A. Programs that
use propositional equality build such proofs (using assumptions in
the context, and various lemmas) and specify where and how they
should be eliminated. Congruence closure can assist with both of
these tasks, by automating the construction of these proofs and de-
termining the “motive” for their elimination.

However, the adaption of this first-order technique to the higher-
order logics of dependently-typed languages is not straightforward.
The combination of congruence closure and full β-reduction makes
the equality relation undecidable. As a result, most dependently-
typed languages take the conservative approach of only incor-
porating congruence closure as a meta-operation, such as Coq’s
congruence tactic. While this tactic can assist with the creation of
equality proofs, such proofs must still be explicitly eliminated. Pro-
posals to use equations from the context automatically [1, 25, 26]
have done so in addition to β-reduction, which makes it hard
to characterize exactly which programs will typecheck, and also
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leaves open the question of how expressive congruence closure is
in isolation.

In this work we define the ZOMBIE surface language to be fully
“up to congruence”, i.e. types which are equated by congruence
closure can always be used interchangeably, and then show how
the elaborator can implement this type system.

Designing a language around an elaborator—an unavoidably com-
plicated piece of software—raises the risk of making the language
hard to understand. Programmers could find it difficult to predict
what core term a given surface term will elaborate to, or they may
have to think about the details of the elaboration algorithm in or-
der to understand whether a program will successfully elaborate at
all. We avoid these problems using two strategies. First, the syntax
of the surface and the core language differ only by erasable an-
notations and the operational semantics ignores these annotations.
Therefore the semantics of an expression is apparent just from look-
ing at the source; the elaborator only adds annotations that can not
change its behavior. Second, we define a declarative specification
of the surface language, and prove that the elaborator is complete
for the specification. As a result, the programmer does not have to
think about the concrete elaboration algorithm.

We make the following contributions:

• We demonstrate how congruence closure is useful when pro-
gramming, by showing examples in Agda, ZOMBIE, and ZOM-
BIE’s explicitly-typed core language (Section 2).

• We define a dependently typed core language where the syntax
contains erasable annotations (Section 3).

• We define a typed version of the congruence closure relation
(Section 4) which is compatible with our core language, includ-
ing features (erasure, injectivity, and generalized assumption)
suitable for a dependent type system.

• We specify the surface language using a bidirectional type sys-
tem (Section 5) that uses this congruence closure relation as its
definition of type equality.

• We define an elaboration algorithm of the surface language to
the core language (Section 6) based on a novel algorithm for
typed congruence closure (Section 7). We prove that our elabo-
ration algorithm is complete for the surface language and pro-
duces well-typed core language expressions. Our typed congru-
ence closure algorithm both decides whether two terms are in
the relation and also produces core language equality proofs.

• We have implemented these algorithms in ZOMBIE, extending
the ideas of this paper to a language that includes datatypes and
pattern matching, a richer logical fragment, and other features.
Congruence closure works well in this setting; in particular,
it significantly simplifies the typing rules for case-expressions
(Section 8). Our implementation is available.1

For space reasons, the full specification of the type systems de-
scribed in this paper and the details of the proofs are only included
in the extended version. 2

2. Programming up to congruence

Consider this simple proof in Agda, which shows that zero is a right
identity for addition.

1 https://code.google.com/p/trellys/
2 Available as supplementary material.

npluszero : (n : Nat) → n + 0 ≡ n

npluszero zero = ≡-refl
npluszero (suc m) = ≡-cong suc (npluszero m)

The proof follows by induction on natural numbers. In the base
case, ≡-refl is a proof of 0 = 0. In the next line, ≡-cong trans-
lates a proof of m + 0 ≡ m (from the recursive call) to a proof of
suc(m + 0) ≡ suc m.

This proof relies on the fact that Agda’s propositional equality
relation (≡) is reflexive and a congruence relation. The former
property holds by definition, but the latter must be explicitly shown.
In other words, the proof relies on the following lemma:

≡-cong : ∀ {A B} {m n : A}

→ (f : A → B) → m ≡ n → f m ≡ f n

≡-cong f ≡-refl = ≡-refl

Now compare this proof to a similar result in ZOMBIE. The same
reasoning is present: the proof follows via natural number induc-
tion, using the reduction behavior of addition in both cases.

npluszero : (n : Nat) → (n + 0 = n)

npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

Suc m →
let _ = npluszero m in

(join : (Suc m) + 0 = Suc (m + 0))

Because ZOMBIE does not provide automatic β-equivalence, re-
duction must be made explicit above. The term join explicitly in-
troduces an equality based on reduction. However, in the successor
case, the ZOMBIE type checker is able to infer exactly how the
equalities should be put together.

For comparison, the corresponding ZOMBIE core language term
includes a number of explicit type coercions:

npluszero : (n : Nat) → (n + 0 = n)

npluszero (n : Nat) =

case n [eq] of

Zero → join [; 0 + 0 = 0]

. join [~eq + 0 = ~eq]

Suc m →
let ih = npluszero m in

join [; (Suc m) + 0 = Suc (m + 0)]

. join [(Suc m) + 0 = Suc ~ih]

. join [~eq + 0 = ~eq]

Above, the expression a . b converts the type of the expression
a, using the equality proof b. Equality proofs may be formed
in a number of ways, either via co-reduction (join[; a b]) or
by congruence (if a is a proof of b=c, then join[ {~a/x}A ]is
a proof of {b/x}A = {c/x}A ). In the base case, eq is a proof
that n = 0, derived from pattern matching. That means that
join [~eq + 0 = ~eq] is a proof that (0 + 0 = 0) = (n + 0) = n.
In the successor case, the proof derived from the recursive call
(m + 0 = m) must be lifted congruently through the equality de-
rived from reduction.

For a larger example, consider unification of first-order terms (Fig-
ure 1). For this example, the term language is the simplest possible,
consisting only of binary trees constructed by branch and leaf and
possibly containing unification variables var represented as natural
numbers. We also use a type Substitution of substitutions, which
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{-# NO_TERMINATION_CHECK #-}

unify : (t1 t2 : Term) → Unify t1 t2

unify leaf leaf = match empty refl

unify leaf (branch t2 t3) = nomatch

unify (branch t1 t2) leaf = nomatch

unify (branch t11 t12) (branch t21 t22)

with unify t11 t21

... | nomatch = nomatch

... | match s p with unify (ap s t12) (ap s t22)

... | nomatch = nomatch

... | match s’ q

= match (compose s’ s)

(trans (apCompose (branch t11 t12))

(trans (cong2 (λ t1 t2 →
branch (ap s’ t1) t2) p q)

(sym (apCompose (branch t21 t22)))))

unify t1 (var x) with (x is∈ t1)

... | no q

= match (singleton x t1)

(trans (singleton-6∈ t x t q)

(varSingleton x t))

... | yes _ = nomatch

unify (var x) t2 with unify t2 (var x)

... | nomatch = nomatch

... | match s p = match s (sym p)

prog unify : (t1 t2 : Term) → Unify t1 t2

rec unify t1 = \ t2 . case t1, t2 of

leaf, leaf → match empty _

leaf, branch _ _ → nomatch

branch _ _, leaf → nomatch

branch t11 t12, branch t21 t22 →
case (unify t11 t21) of

nomatch → nomatch

match s p → case (unify (ap s t12) (ap s t22)) of

nomatch → nomatch

match s’ p’ →
unfold (ap s’ (ap s t1)) in

unfold (ap s’ (ap s t2)) in

let _ = apCompose s’ s t1 in

let _ = apCompose s’ s t2 in

match (compose s’ s) _

_ , var x → case (isin x t1) of

no q →
let _ = varSingleton x t1 in

let _ = singletonNotIn t1 x t1 q in

match (singleton x t1) _

yes _ → nomatch

var x, _ → case (unify t2 (var x)) of

nomatch → nomatch

match s p → match s _

Figure 1. First-order unification in Agda (left) and in ZOMBIE (right)

log snoc_inv : (xs ys : List A) → (z : A) → (snoc xs z) = (snoc ys z) → xs = ys

ind snoc_inv xs = \ ys z pf. case xs [xeq], ys of

Cons x xs’ , Cons y ys’ →
let _ = (smartjoin : (snoc xs z) = Cons x (snoc xs’ z)) in

let _ = (smartjoin : (snoc ys z) = Cons y (snoc ys’ z)) in

let _ = snoc_inv xs’ [ord xeq] ys’ z _ in

_

...

snoc-inv : ∀ xs ys z → (snoc xs z ≡ snoc ys z) → xs ≡ ys

snoc-inv (x :: xs’) (y :: ys’) z pf with (snoc xs’ z) | (snoc ys’ z) | inspect (snoc xs’) z | inspect (snoc ys’) z

snoc-inv (.y :: xs’) (y :: ys’) z refl | .s2 | s2 | [ p ] | [ q ] with (snoc-inv xs’ ys’ z (trans p (sym q)))

snoc-inv (.y :: .ys’) (y :: ys’) z refl | .s2 | s2 | [ p ] | [ q ] | refl = refl

...

Figure 2. Pattern matching can be tricky in Agda

are built by the functions singleton and compose, and applied to
terms by ap.

Proving that unify terminates is difficult because the termina-
tion metric involves not just the structure of the terms but also
the number of unassigned unification variables. (For example, see
McBride [18]). To save development effort, a programmer may
elect to prove only a partial correctness property: if the function
terminates then the substitution it returns is a unifier.

In other words, if the unify function returns, it either says that the
terms do not match, or produces a substitution s and a proof that
s unifies them. We write the data structure in ZOMBIE as follows
(the Agda version is similar):

data Unify (t1 : Term) (t2 : Term) : Type where

nomatch

match of (s : Substitution) (pf : ap s t1 = ap s t2)

Comparing the Agda and ZOMBIE implementations, we can see the
effect of programming up-to-congruence instead of up-to-β. When
the unifier returns match, it needs to supply a proof of equality.
The Agda version explicitly constructs the proof using equational
reasoning, which involves calling congruence lemmas sym, trans
and cong2 from the standard library. The ZOMBIE version leaves
such proof arguments as just an underscore, meaning that it can
be inferred from the equations in the context. For that purpose, it
introduces equalities to the context with unfold (for β-reductions,
see Section 8.2) and with calls to relevant lemmas.

Figure 2 demonstrates how congruence closure makes ZOMBIE’s
version of dependently-typed pattern matching (i.e smart case)
both simple and powerful. The figure compares (parts of) inductive
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x, y, f, g, h ∈ expression variables

expressions
a, b, A,B ::= Type | x

| (x :A)→ B | rec fA x .a | a b
| •(x :A)→ B | rec fA •x .a | a •b
| a = b | joinΣ | a.b

strategies
Σ ::= ;p i j : a = b

| {∼v1/x1} ... {∼vj/xj}c : B
| injdom a | injrng a b | injeq i a

values
v ::= Type | x

| (x :A)→ B | rec fA x .a
| •(x :A)→ B | rec fA •x .a
| a = b | joinΣ | v.b

Figure 3. Syntax

proofs in ZOMBIE and Agda of an inversion lemma about the snoc

operation, which appends an element to the end of a list. When
both lists are nonempty, the proof argument can be used to derive
that x = y (using the injectivity of Cons), and the recursive call
shows that xs’ = ys’. Congruence closure both puts these together
in a proof of Cons x xs’ = Cons y ys’ and supplies the necessary
proof for the recursive call.

Proving the property in Agda using pattern matching, on the other
hand, is a “quite fun” puzzle.3 Here, the equivalence between x

and y cannot be observed until (snoc xs’ z) and (snoc xs’ z)

are named. The so-called “inspect on steroids” trick provides the
equalities (p : (snoc xs’ z = s2) and q : (snoc ys’ z) = s2)
that are necessary to constructing the fourth argument for the re-
cursive call. Although this development is not long, it is not at all
straightforward, requiring advanced knowledge of Agda idioms.

3. Annotated core language

We now turn to the theory of the system. We begin by describing the
target of the elaborator: our annotated core language. This language
is a small variant of the dependently-typed call-by-value language
defined in prior work [24]. It corresponds to a portion of ZOMBIE’s
core language, but to keep the proofs tractable we omit ZOMBIE’s
recursive datatypes and its replace its terminating sublanguage [9]
with syntactic value restrictions.

The syntax is shown in Figure 3. Terms, types and the sort Type are
collapsed into one syntactic category. We use the notation {a/x}B
to denote the capture-avoiding substitution of a for x in B .

Type annotations, such as A in rec fA x .a , are optional and may be
omitted from expressions. Annotations are subscripted in Figure 3.
The meta-operator |a| removes these annotations . Expressions that
contain no typing annotations are called erased.

An expression that includes all annotations is called a core or
annotated expression. The core typing judgment, written Γ ` a : A
and described below, requires that all annotations be present. In
this case, the judgment is syntax-directed and trivially decidable.
In contrast, type checking for erased terms is undecidable.

3 Posed by Eric Mertens on #agda.

The only role of annotations is to ensure decidable type checking.
They have no effect on the semantics. In fact, the operational
semantics, written a ;cbv b, is defined only for erased terms and
extended to terms with annotations via erasure. This operational
semantics is a small-step, call-by-value evaluation relation.

Figure 4 shows the typing rules of the core language typing judg-
ment Γ ` a : A. Additionally, the judgment ` Γ (elided from the
figure) states that each type in Γ is well-formed.

Recursive functions are defined using expressions rec f x .a , with
the typing rule TREC. Such expressions are values, and applications
step by the rule (rec f x .a) v ;cbv {v/x} {rec f x .a/f } a .
If the function makes no recursive calls we also use the syntactic
sugar λx .a . When a function has a dependent type (TDAPP) then its
argument must be a value (this restriction is common for languages
with nontermination [16, 28]).

Irrelevance In addition to the normal function type, the core lan-
guage also include computationally irrelevant function types •(x :
A) → B , which are inhabited by irrelevant functions rec fA •x .b
and eliminated by irrelevant applications a •b . Many expressions
in a dependently typed program are only used for type checking,
but do not affect the runtime behavior of the program, and these
can be marked irrelevant.

Our treatment of irrelevance follows ICC* [5]. Because the treat-
ment of irrelevant functions closely mirrors that of normal func-
tions, we omit the typing rules in this version of the paper. We
include this feature in the formalism to show that, besides being
generally useful, irrelevance works well with congruence closure.
Given that we already handle erasable annotations, we can support
full irrelevance for free.

Equality The typing rules at the bottom of Figure 4 deal with
propositional equality, a primitive type. The formation rule TEQ
states a = b is a well-formed type whenever a and b are two well-
typed expressions. There is no requirement that they have the same
type (that is to say, our equality type is heterogeneous).

Propositional equality is eliminated by the rule TCAST: given a
proof, v of an equation A = B we can change the type of an ex-
pression from A to B . Since our equality is heterogeneous, we need
to check that B is in fact a type. We require the proof to be a value
in order to rule out divergence. A full-scale language could use a
more ambitious termination analysis. (Indeed, our ZOMBIE imple-
mentation does so.) However, the congruence proofs generated by
our elaborator are syntactic values, so for the purposes of this pa-
per, the simple value restriction is enough. The proof term v in a
type cast is an erasable annotation with no operational significance,
so the typechecker considers equalities like a = a.v to be trivially
true, and the elaborator is free to insert coercions using congruence
closure proofs anywhere.

The rest of the figure shows introduction rules for equality. Equal-
ity proofs do not carry any information at runtime, so they all use
the same term constructor join, but with different (erasable) anno-
tations, Σ.

The rule TJOINP introduces equations which are justified by the
operational semantics. It states that join is a proof of a = b
when the erasures of a and b reduce to a common expression c,
using the parallel reduction relation a ;p b. Because ZOMBIE
requires programmers to explicitly indicate expressions that should
be reduced, ZOMBIE source programs include this term. Note that
without normalization, we need a cutoff for how long to evaluate,
so programmers must specify the number of steps i, j of reduction
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Γ ` a : A

Γ ` Type : Type
TTYPE

x : A ∈ Γ

Γ ` x : A
TVAR

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` (x :A)→ B : Type
TPI

Γ ` (x :A1)→ A2 : Type
Γ, f : (x :A1)→ A2, x : A1 ` a : A2

Γ ` rec f(x:A1)→A2
x .a : (x :A1)→ A2

TREC

Γ ` a : A→ B
Γ ` b : A

Γ ` a b : B
TAPP

Γ ` a : (x :A)→ B
Γ ` v : A

Γ ` a v : {v/x}B TDAPP

Γ ` a : A Γ ` b : B

Γ ` a = b : Type
TEQ

Γ ` a : A Γ ` v : A = B Γ ` B : Type

Γ ` a.v : B
TCAST

|a|;i
p c |b|;j

p c Γ ` a = b : Type

Γ ` join;pi j :a=b : a = b
TJOINP

Γ ` B : Type ∀k . Γ ` vk : ak = bk
|B | = |({a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c)|

Γ ` join{∼v1/x1} ... {∼vj /xj }c:B : B
TJSUBST

Γ ` v : (A1 = A2) = (B1 = B2)

Γ ` joininjeq i v : Ai = Bi
TJINJEQ

Γ ` v : ((x :A1)→ B1) = ((x :A2)→ B2)

Γ ` joininjdom v : A1 = A2
TJINJDOM

Γ ` v1 : ((x :A)→ B1) = ((x :A)→ B2) Γ ` v2 : A

Γ ` joininjrng v1 v2
: {v2/x}B1 = {v2/x}B2

TJINJRNG

Figure 4. Typing rules for the annotated core language

to allow (in ZOMBIE this defaults to 1000 if these numbers are
elided).

The rule TJSUBST states that equality is a congruence. The simplest
use of the rule is to change a single subexpression, using a proof v.
The use of the proof is marked with a tilde in the Σ annotation;
for example, if Γ ` v : y = 0 then we can prove the equality
joinVec Nat (∼v):Vec Nat=Vec Nat 0. One can also eliminate several dif-
ferent equality proofs in one use of the rule. The syntax of subst
includes a type annotation B , and the last premise of the TJSUBST
rule checks that the ascribed type B matches what one gets after
substituting the given equalities into the template c. This annotation
adds flexibility because the check is only up-to erasure: if needed
the programmer can give the left- and right-hand side of B different
annotations to make both sides well-typed.

Finally, the rules TJINJEQ, TJINJDOM, and TJIINJRNG state that
the equality type and arrow type constructors are injective. (The
figure elides similar rules for irrelevant arrow types.) Making type
constructors injective is unconventional for a dependent language.
It is incompatible with e.g. Homotopy Type Theory, which proves
Nat → Void = Bool → Void. However, in our language we need
arrow injectivity to prove type preservation, because type casts do
not block reduction [24]. We also add injectivity for the equality
type constructor (TJINJEQ). This is not required for type safety, but
it is justified by the metatheory, so it is safe to add. Injectivity is
important for the surface language design, see Section 6.

The core language satisfies the usual properties for type systems.
For the the proofs in Section 6 we rely on the fact that is satisfies
weakening, substitution (restricted to values), and regularity. It also
satisfies preservation, progress, and decidable type checking. The
proofs of these lemmas are in Sjöberg et al. [24].

4. Congruence closure

The driving idea behind our surface language is that the program-
mer should never have to explicitly write a type cast a.v if the proof

v can be inferred by congruence closure. In this section we exactly
specify which proofs can be inferred, by defining the typed congru-
ence closure relation Γ � a = b shown in Figure 5.

Like the usual congruence closure relation for first-order terms, the
rules in Figure 5, specify that this relation is reflexive, symmetric
and transitive. It also includes rules for using assumptions in the
context and congruence by changing subterms. However, we make
a few changes:

First, we add typing premises (in TCCREFL and TCCERASURE)
to make sure that the relation only equates well-typed and fully-
annotated core language terms. In other words,

If ` Γ and Γ � a = b, then Γ ` a : A and Γ ` b : B .

Next, we adapt the congruence rule so that it corresponds to the
TJSUBST rule of the core language. In particular, the rule TC-
CCONGRUENCE includes an explicit erasure step so that the two
sides of the equality can differ in their erasable portions.

Furthermore, we extend the relation in several ways.4 We automat-
ically use computational irrelevance, in the rule TCCERASURE.
This makes sure that the programmer can ignore all annotations
when reasoning about programs. Also, we reason up to injectivity
of datatype constructors (as in rules TCCINJDOM, TCCINJRNG,
and TCCINJEQ). As mentioned in Section 3 these rules are valid in
the core language, and we will see in Section 6 that there is good
reason to make the congruence closure algorithm use them auto-
matically.

Finally, the rule TCCASSUMPTION is a bit stronger than the classic
rule from first order logic. In the first-order logic setting, this rule

4 Systems based around congruence closure often strengthen their automatic
theorem prover in some way, e.g. Nieuwenhuis and Oliveras [20] add
reasoning about natural number equations, and the Coq congruence tactic
automatically uses injectivity of data constructors [10].
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Γ ` a : A

Γ � a = a
TCCREFL

Γ � a = b

Γ � b = a
TCCSYM

Γ � a = b Γ � b = c

Γ � a = c
TCCTRANS

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b
TCCERASURE

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b
TCCASSUMPTION

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCCONGRUENCE

Γ � (a1 = a2) = (b1 = b2)

Γ � ak = bk
TCCINJEQ

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2
TCCINJDOM

Γ � (A1 → B1) = (A2 → B2)

Γ � B1 = B2
TCCINJRNG

Figure 5. Typed congruence closure relation

is defined as just the closure over equations in the context:

x : a = b ∈ Γ
Γ � a = b

However, in a dependently typed language, we can have equations
between equations. In this setting, the classic rule does not respect
CC-equivalence of contexts. For example, it would prove the first
of the following two problem instances, but not the second.

x :Nat, y :Nat, a :Type, h1 : (x = y) = a, h2 :x = y � x = y

x :Nat, y :Nat, a :Type, h1 : (x = y) = a, h2 :a � x = y

Therefore we replace the rule with the stronger version shown in
the figure.

We were led to these strengthened rules by theoretical considera-
tions when trying to show that our elaboration algorithm was com-
plete with respect to the declarative specification (see Section 6).
Once we implemented the current set of rules, we found that they
were useful in practice as well as in theory, because they improved
the elaboration of some examples in our test suite. The stronger as-
sumption rule is useful in situations where type-level computation
produces equality types, for example when using custom induction
principles.

5. Surface language

Next, we give a precise specification of the surface language, which
shows how type inference can use congruence closure to infer casts
of the form a.v . Note that this process involves determining both
the location of such casts and the proof of equality v .

Figure 6 defines a bidirectional type system for a partially annotated
language. This type system is defined by two (mutually defined)
judgments: type synthesis, written Γ ` a ⇒ A, and type checking,
written Γ ` a ⇐ A. Here Γ and a are always inputs, but A is an
output of the synthesizing judgment and an input of the checking
judgment.

Most rules of this type system are standard for bidirectional sys-
tems [22], including the rules for inferring the types of variables
(IVAR), the well-formedness of types (IEQ, ITYPE, and IPI), non-
dependent application (IAPP), and the mode switching rules CINF
and IANNOT. Any term that has enough annotations to synthesize
a type A also checks against that type (CINF). Conversely, some
terms (e.g. functions) require a known type to check against, and
so if the surrounding context does not specify one, the programmer
must add a type annotation (IANNOT).

The rules ICAST and CCAST in Figure 6 specify that checking
and inference work “up-to-congruence.” At any point in the typ-
ing derivation, the system can replace the inferred or checked type
with something congruent. The notation Γ �∃ A = B lifts the
congruence closure judgment from Section 4 to the partially anno-
tated surface language. These two rules contain kinding premises
to maintain well-formedness of types. The invariant maintained by
the type system is that (in a well-formed context Γ) any synthesized
type is guaranteed to be well-kinded, while it is the caller’s respon-
sibility to ensure that any time the checking judgment is used the
input type is well-formed.

The rule for checking functions (CREC) is almost identical to the
corresponding rule in the core language, with just two changes.
First, the programmer can omit the types A1, and A2, because
in a bidirectional system they can be deduced from the type the
expression is checked against. Second, the new premise injrng
slightly restricts the use of this rule in order to ensure that typing
respects CC-equivalence of contexts; we return to this issue in
Section 6. This premise also appears in the rule for dependent
application (IDAPP).

Equations that are provable via congruence closure are available
via the checking rule, CREFL. In this case the proof term is just
join, written as an underscore in the concrete syntax. Because this
is a checking rule, the equation to be proved does not have to be
written down directly if it can be inferred from the context.

The rule IJOINP proves equations using the operational seman-
tics. We saw this rule used in the npluszero example, written
join : 0 + 0 = 0 in the concrete syntax. Note that the program-
mer must explicitly write down the terms that should be reduced.
The rule IJOINP is a synthesizing rather than checking rule in order
to ensure that the typing rules are effectively implementable. Al-
though the type system works “up to congruence” the operational
semantics do not. So the expression itself needs to contain enough
information to tell the typechecker which member of the equiva-
lence class should be reduced—it cannot get this information from
the checking context. (In practice, having to explicitly write this an-
notation can be annoying. The ZOMBIE implementation includes a
feature smartjoin which can help—see Section 8.2).

It is also interesting to note the rules that do not appear in Figure 6.
For example, there is no rule or surface syntax corresponding to
TCAST, because this feature can be written as a user-level function.
Similarly, the rather involved machinery for rewriting subterms and
and erased terms (rule TJSUBST) can be entirely omitted, since it
is subsumed by the congruence closure relation. The programmer
only needs to introduce the equations into the context and they will
be used automatically.
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Γ ` a ⇒ A Γ ` a ⇐ A

Γ ` a ⇒ A Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇒ B
ICAST

Γ ` a ⇐ A Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇐ B
CCAST

Γ ` A⇐ Type Γ ` a ⇐ A

Γ ` aA ⇒ A
IANNOT

Γ ` a ⇒ A

Γ ` a ⇐ A
CINF

Γ ` a ⇒ A Γ ` b ⇒ B

Γ ` a = b ⇒ Type
IEQ

Γ �∃ a = b

Γ ` join⇐ a = b
CREFL

Γ ` a1 = a2 ⇐ Type
|a1|;i

p b |a2|;j
p b

Γ ` join;pi j :a1=a2
⇒ a1 = a2

IJOINP

Γ, f : (x :A1)→ A2, x : A1 ` a ⇐ A2

Γ, x : A1 �∃ injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 ` (x :A1)→ A2 ⇐ Type

Γ ` rec f x .a ⇐ (x :A1)→ A2
CREC

Γ ` Type⇒ Type
ITYPE

x : A ∈ Γ Γ ` A⇐ Type

Γ ` x ⇒ A
IVAR Γ �∃ a = b

Γ ` A⇐ Type Γ, x : A ` B ⇐ Type

Γ ` (x :A)→ B ⇒ Type
IPI

Γ′ � a ′ = b′ |a| = |a ′| |b| = |b′| |Γ| = |Γ′|
Γ �∃ a = b

EEQ

Γ ` a ⇒ A→ B Γ ` b ⇐ A Γ ` B ⇐ Type

Γ ` a b ⇒ B
IAPP Γ �∃ injrngA for v

Γ ` a ⇒ (x :A)→ B Γ ` v ⇐ A
Γ �∃ injrng (x :A)→ B for vA
Γ ` {vA/x}B ⇐ Type

Γ ` a v ⇒ {vA/x}B
IDAPP

Γ′ � injrng (x :A′)→ B ′ for v ′

|(x :A)→ B | = |(x :A′)→ B ′| |v | = |v ′| |Γ| = |Γ′|
Γ �∃ injrng (x :A)→ B for v

EIRPI

Γ � injrngA for v

Γ ` v : A Γ ` (x :A)→ B : Type
∀A′ B ′ v ′.((Γ � ((x :A)→ B) = ((x :A′)→ B ′) and Γ ` v ′ : A′ and |v | = |v ′|) implies Γ � {v/x}B = {v ′/x}B ′)

Γ � injrng (x :A)→ B for v
IRPI

Figure 6. Bidirectional typing rules for surface language

Finally we note that the surface language does not satisfy some
of the usual properties of type systems. In particular, it does lacks
a general weakening lemma because the injrng relation cannot be
weakened. Similarly, it does not satisfy a substitution lemma be-
cause that property fails for the congruence closure relation. (We
might expect that Γ, x : C � a = b and Γ ` v : C would imply
Γ � {v/x} a = {v/x} b. But this fails if C is an equation and the
proof v makes use of the operational semantics.) In both of these
cases, the situations where weakening and substitution fail are rare
and there are straightforward workarounds for programmers. Fur-
thermore, these properties do hold for fully annotated expressions,
so there are no restrictions on the output of elaboration.

6. Elaboration

We implement the declarative system using an elaborating type-
checker, which translates a surface language expression to an ex-
pression in the core language, if it type checks.

We formalize the algorithm that the elaborator uses as two induc-
tively defined judgments, written Γ′ a ⇒ a ′ : A′ (Γ′ and a are

inputs) and Γ′ a ⇐ A′ ; a ′ (Γ′, a , and A′ are inputs). The vari-
ables with primes (Γ′, a ′ and A′) are fully annotated expressions
in the core language, while a is the surface language term being
elaborated. The elaborator deals with each top-level definition in
the program separately, and the context Γ′ is an input containing
the types of the previously elaborated definitions.

The job of the elaborator is to insert enough annotations in the
term to create a well-typed core expression. It should not otherwise
change the term. Stated more formally,

Theorem 1 (Elaboration soundness).

1. If Γ a ⇒ a ′ : A, then Γ ` a ′ : A and |a| = |a ′|.

2. If Γ ` A : Type and Γ a ⇐ A ; a ′, then Γ ` a ′ : A and
|a| = |a ′|.

Furthermore, the elaborator should accept those terms specified by
the declarative system. If the type system of Section 5 accepts
a program, then the elaborator should succeed (and produce an
equivalent type in inference mode).
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Theorem 2 (Elaboration completeness).

1. If Γ ` a ⇒ A and Γ ; Γ′ and Γ′ A⇐ Type ; A′, then
Γ′ a ⇒ a ′ : A′′ and Γ′ � A′ = A′′

2. If Γ ` a ⇐ A and and Γ ; Γ′ and Γ′ A⇐ Type ; A′,
then Γ′ a ⇐ A′ ; a ′.

Designing the elaboration rules follows the standard pattern of
turning a declarative specification into an algorithm: remove all
rules that are not syntax directed (in this case ICAST and CCAST),
and generalize the premises of the remaining rules to create a
syntax-directed system that accepts the same terms. At the same
time, the uses of congruence closure relation Γ � a = b, must be
replaced by appropriate calls to the congruence closure algorithm.
We specify this algorithm using the following (partial) functions:

Γ A
?
= B ; v , which checks A and B for equality and

produces core-language proof v .
Γ A =? (x : B1)→ B2 ; v , which checks whether A is equal

to some function type and produces that type and proof v .
Γ A =? (B1 = B2) ; v , which is similar to above, except

for equality types.

For example, consider the rule for elaborating function applica-
tions:

Γ a ⇒ a ′ : A1 Γ A1 =? (x : A)→ B ; v1

Γ v ⇐ A ; v ′ Γ � injrng (x :A)→ B for v ′

Γ a v ⇒ a ′.v1 v ′ : {v ′/x}B EIDAPP

In the corresponding declarative rule (IDAPP) the applied term a
must have an arrow type, but this can be arranged by implicitly us-
ing ICAST to adjust a’s type. Therefore, in the algorithmic system,
the corresponding condition is that the type of a should be equal to
an arrow type (x :A)→ B modulo the congruence closure. Oper-
ationally, the typechecker will infer some type A1 for a , then run
the congruence closure algorithm to construct the set of all expres-
sions that are equal to A1, and then check if the set contains some
expression which is an arrow type. The elaborated core term uses
the produced proof of A1 = (x :A) → B in a cast to change the
type of a .

At this point there is a potential problem: what if A1 is equal to
more than one arrow type? For example, if A1 = (x :A) → B =
(x :A′) → B , then the elaborator has to choose whether to check
b against A or A′. A priori it is quite possible that only one of them
will work; for example the context Γ may contain an inconsistent
equation like Nat → Nat = Bool → Nat. We do not wish to
introduce a backtracking search here, because that could make type
checking too slow.

This kind of mismatch in the domain type can be handled by
extending the congruence closure algorithm. Note that things are
fine if Γ � A = A′, since then it does not matter if A or A′ is
chosen. So the issue only arises if Γ � (x : A) → B = (x :
A′) → B and not Γ � A = A′. Fortunately, type constructors are
injective in in the core language (Section 3). Including injectivity as
part of the congruence closure judgment (by the rule TCCINJDOM)
ensures that it does not matter which arrow type is picked.

We also have to worry about a mismatch in the codomain type, i.e.
the case when Γ � A1 = (x :A) → B and Γ � A1 = (x :A′) →
B ′ for two different types. At first glance it seems as if we could use
the same solution. After all, the core language includes a rule for
injectivity of the range of function types (rule TJINJRNG). There is
an important difference between this rule and TJINJDOM, however,

which is the handling of the bound variable x in the codomain B—
the rule says that this can be closed by substituting any value for
it. As a result, we cannot match this rule in the congruence closure
relation, because the algorithm would have to guess that value.

Instead, we restrict the declarative language to forbid this problem-
atic case. That is, the programmer is not allowed to write a func-
tion application unless all possible return types for the function are
equal. Operationally, the typechecker will search for all arrow types
equal to A1 and check that the the codomains with v substituted are
equal in the congruence closure.

In the fully-annotated core language we express this relation with
the rule IRPI, and then lift this operation to partially annotated
terms by rule EIRPI (Figure 6). Note that in cases when an ap-
plication is forbidden by this check, the programmer can avoid the
problem by proving the required equation manually and ensuring
that it is available in the context.

On the checking side, the mode-change rule ECINF now needs to
prove that the synthesized and checked types are equal.

Γ a ⇒ a ′ : A Γ A
?
= B ; v1

Γ a ⇐ B ; a ′.v1
ECINF

This rule corresponds to a direct call to the congruence closure al-
gorithm, producing a proof term v1. Note that the inputs are fully
elaborated terms—in moving from the declarative to the algorith-
mic type system, we replaced the undecidable condition Γ �∃ A =
B with a decidable one.

Finally, the rule ECREFL elaborates checkable equality proofs
(written as underscores in the concrete ZOMBIE syntax).

Γ A =? (a = b) ; v1 Γ a
?
= b ; v

Γ join⇐ A ; v.symm v1

ECREFL

As in the rule for application, the typechecker does a search through
the equivalence class of the ascribed type A to see if it contains any
equations. If there is more than one equation it does not matter
which one gets picked, because the congruence relation includes
injectivity of the equality type constructor (TCCINJEQ).

7. Implementing congruence closure

Algorithms for congruence closure in the first-order setting are well
studied, and our work builds on them. However, in our type system
the relation Γ � a = b does more work than “classic” congruence
closure: we must also handle erasure, terms with bound variables,
(dependently) typed terms, the injectivity rules, the “assumption up
to congruence” rule, and we must generate proof terms in the core
language.

Our implementation proves an equation a = b in three steps. First,
we erase all annotations from the input terms and explicitly mark
places where the congruence rule can be applied, using an operation
called labeling. Then we use an adapted version of the congruence
closure algorithm by Nieuwenhuis and Oliveras [20]. Our version
of their algorithm has been extended to also handle injectivity and
“assumption up to congruence”, but it ignores all the checks that the
terms involved are well-typed. Finally, we take the untyped proof
of equality, and process it into a proof that a and b are also related
by the typed relation. The implementation is factored in this way
because the congruence rule does not necessarily preserve well-
typedness, so the invariants of the algorithm are easier to maintain
if we do not have to track well-typedness at the same time.
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7.1 Labeling terms

In Γ � a = b, the rule TCCCONGRUENCE is stated in terms
of substitution. But existing algorithms expect congruence to be
applied only to syntactic function applications: from a = b con-
clude f a = f b. To bridge this gap, we preprocess equations into
(erased) labeled expressions. A label F is an erased language ex-
pression with some designated holes (written –) in it, and a labeled
expression is a label applied to zero or more labeled expressions,
i.e. a term in the following grammar.

a ::= F ai

Typically a label will represent just a single node of the abstract
syntax tree. For example, a wanted equation f x = f y will
be processed into (– –) f x = (– –) f y , where the label
(– –) means this is an application. However, for syntactic forms
involving bound variables, it can be necessary to be more coarse-
grained. For example, given a = b our implementation can prove
rec f x .a+x = rec f x .b+x , which involves using rec f x .–+x
as a label. In general, to process an expression a into a labeled
term, the implementation will select the largest subexpressions that
do not involve any bound variables.

Applying the labeling step simplifies the congruence closure prob-
lems in several ways. We do not need to consider erasure, congru-
ence is only used on syntactic label applications, and all the dif-
ferent injectivity rules are handled generically. We use the notation
Γ `L a = b to mean that a and b are CC-equivalent as labeled
terms.

7.2 Untyped congruence closure

Next, we use an algorithm based on Nieuwenhuis and Oliveras [20]
to decide the Γ `L a = b relation. The algorithm first “flattens”
the problem by allocating constants ci (i.e. fresh names) for every
subexpression in the input. After this transformation every input
equation has either the form c1 = c2 or c = F (c1, c2), that is,
it is either an equation between two atomic constants or between
a constant and a label F applied to constants. Then follows the
main loop of the algorithm, which is centered around three data-
structures: a queue of input equations, a union-find structure and
a lookup table. In each step of the loop, we take off an equation
from the queue and update the state accordingly. When all the
equations have been processed the union-find structure represents
the congruence closure.

The union-find structure tracks which constants are known to be
equal to each other. When the algorithm sees an input equation
c1 = c2 it merges the corresponding union-find classes. This deals
with the reflexivity, symmetry and transitivity rules. The lookup
table is used to handle the congruence rule. It maps applications
F (c1, c2) to some canonical representative c. If the algorithm sees
an input equation c = F (c1, c2), then c is recorded as the repre-
sentative. If the table already had an entry c′, then we deduce a new
equation c = c′ which is added to the queue.

In order to adapt this algorithm to our setting, we make three
changes. First, we adapt the lookup tables to include the richer la-
bels corresponding to the many syntactic categories of our core lan-
guage. (Nieuwenhuis and Oliveras only use a single label meaning
“application of a unary function.”)

Second, we deal with injectivity rules in a way similar to the
implementation of Coq’s congruence tactic [10]. Certain labels
are considered injective, and in each union-find class we identify
the set of terms that start with an injective label. If we see an input

equation c = F (c1, c2) andF is injective we record this in the class
of c. Whenever we merge two classes, we check for terms headed
by the same F ; e.g. if we merge a class containing F (c1, c2) with a
class containing F (c′1, c

′
2), we deduce new equations c1 = c′1 and

c2 = c′2 and add those to the queue.

Third, our implementation of the extended assumption rule works
much like injectivity. With each union-find class we record two
new pieces of information: whether any of the constants in the
class (which represent types of our language) are known to be
inhabited by a variable, and whether any of the constants in the
class represents an equality type. Whenever we merge two classes
we check for new equations to be added to the queue.

The extended version of the paper contains a precise description of
our algorithm, and also gives a formal proof of its correctness:

Lemma 3. The algorithm described above is a decision procedure
for the relation Γ `L a = b.

7.3 Typing restrictions and generating core language proofs

Along the pointers in the union-find structure, we also keep track
of the evidence that showed that two expressions are equal. The
syntax of the evidence terms is given by the following grammar. An
evidence term p is either an assumption x (with a proof p that x’s
type is an equation), reflexivity, symmetry, transitivity, injectivity,
or an application of congruence annotated with a label A.

p, q ::= x.p | refl | p−1 | p; q | inji p | cong A p1 .. pi

Next we need to turn the evidence terms p into proof terms in
the core calculus. This is nontrivial, because the Nieuwenhuis-
Oliveras algorithm does not track types. Not every equation which
is derivable by untyped congruence closure is derivable in the typed
theory; for example, if f : Bool → Bool, then from the equation
(a : Nat) = (b : Nat) we can not conclude f a = f b, because
f a is not a well-typed term. Worse still, even if the conclusion is
well-typed, not every untyped proof is valid in the typed theory,
because it may involve ill-typed intermediate terms. For example,
let Id : (A : Type) → A → A be the polymorphic identity
function, and suppose we have some terms a : A, b : B, and know
the equations x : A = B and y : a = b. Then

(congId x refl); (congId refl y)

is a valid untyped proof of Id A a = Id B b. But it is not a correct
typed proof because it involves the ill-typed term Id B a:

x : A = B a = a
Id A a = Id B a

cong
B = B y : a = b

Id B a = Id B b
cong

Id A a = Id B b
trans

Corbineau [10] notes this as an open problem. Of course, the
above proof is unnecessarily complicated. The same equation can
be proved by a single use of congruence. Furthermore, the simpler
proof does not have any issues with typing: every expression oc-
curring in the derivation is either a subexpression of the goal or a
subexpression of one of the equations from the context, so we know
they are well-typed.

Our key observation is that this trick works in general. The only
time a congruence proof will involve expressions which were not
already present in the context or goal is when transitivity is applied
to two derivations ending in cong. We simplify such situations
using the following CONGTRANS rule.

(cong A p1 .. pi); (cong A q1 .. qi) 7→ cong A (p1; q1) .. (pi ; qi)
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This rule is valid in general, and it does not make the proof
larger. We also need rules for simplifying uses of injectivity and
assumption-up-to-CC, such as

inji (cong A p1 .. pk ) 7→ pi
x.(r ;cong= p q) 7→ p−1; (x.r ); q

The complete simplification relation 7→ includes the above rules,
some additional rules for pushing uses of symmetry (−1) past the
other evidence constructors, and rules for rewriting subterms.

Any evidence term p can be simplified into a normalized evidence
term p∗. And given p∗ it is easy to produce a corresponding proof
term in the core language. The idea is that one can reconstruct the
middle expression in every use of transitivity (p; q), because at
least one of p and q will be specific enough to pin down exactly
what equation it is proving.

Simplifying the evidence terms into this form also solves another
issue, which arises because of the TCCERASURE rule. Because the
input terms are preprocessed to delete annotations (Section 7.1), an
arbitrary evidence term will not uniquely specify the annotations.
Again, this issue only arises because of the cong-trans pair. Simpli-
fying the evidence term resolves the issue, because in a simplified
term every intermediate expression is pinned down.

Putting together the labeling step, the evidence simplification step
and the proof term generation step we can relate typed and un-
typed congruence closure. In the following theorem, the relation
Γ ` a = b is defined by similar rules as Figure 5 except that we
omit the typing premises in TCCREFL, TTCERASURE and TTC-
CONGRUENCE.

Theorem 4. Suppose Γ ` a = b and ` Γ and Γ ` a = b : Type.
Then Γ � a = b. Furthermore Γ ` v : a = b for some v .

The computational content of the proof is how the elaborator gen-
erates core language evidence for equalities, so this shows the cor-
rectness of the ZOMBIE implementation. But it is also interesting
as a theoretical result in its own right, and an important part of the
proof of completeness of elaboration (Section 6).

8. Extensions

The full ZOMBIE implementation includes more features than the
surface language described in Section 5. We omitted them from the
formal system in order to simplify the proofs, but they are important
to make programming up to congruence work well.

8.1 Smart case

Although we do not include datatypes in this paper, they are a
part of the ZOMBIE implementation, and an important component
of any dependently-typed language. The presence of congruence
closure elaboration means that the core language [24] can use a
specification of dependently-typed pattern matching called smart
case [1].

With smart case, the rule for case analysis introduces a new equa-
tion into the context when checking each branch of a case expres-
sion. For example, the rule for an if expression type checks each
branch under the assumption that the condition is true or false.

Γ ` a : Bool
Γ, x : a = true ` b1 : A
Γ, x : a = false ` b2 : A

Γ ` if a then b1 else b2 : A
TFULLCASE

This rule is in contrast to specifications that use unification to
communicate the information gained by pattern matching. In those
systems, if the scrutinee and the patterns are not unifiable (in
the fragment of higher-order unification supported by the type
system) then the case expression must be rejected. Furthermore, the
specification of the typing rule for the unification based systems
is more complicated. Smart case, by pushing this information to
propositional equality, is both simpler and more expressive.

The downside to smart case has been that because this information
is recorded as an assumption in the context, it is more work for the
programmer. However, with congruence closure, the type system
is immediately able to take advantage of these equalities in each
branch. Thus, the ZOMBIE surface language has the convenience
of the unification-based rule, while the core language enjoys the
simplicity of smart case.

8.2 Reduction modulo congruence

In the paper all β-reductions are introduced by expressions
join : a = b. But in practice some additional support from the
typechecker for common patterns can make programming much
more pleasant.

First, one often wants to evaluate some expression a “as far as
it goes”. Then making the programmer write both sides of the
equation a = b is unnecessarily verbose. Instead we provide
the syntax unfold a in body. The implementation reduces a to
normal form, a ;cbv a

′ ;cbv a
′′ ;cbv a

′′′ (if a does not terminate
the programmer can specify a maximum number of steps), and then
introduces the corresponding equations into the context with fresh
names. That is, it elaborates as

let _ = (join : a = a’) in

let _ = (join : a’ = a’’) in

let _ = (join : a’’ = a’’’) in

body

Second, many proofs requires an interleaving of evaluation and
equations from the context, particularly in order to take advantage
of equations introduced by smart case. One example is npluszero

in Section 2. The case-expression needs to return a proof of
n+0 = n. If we try to directly evaluate n+0, we would reach the
stuck expression case n of Zero → 0; Succ m’ → Succ (m’ + 0),
so instead we used an explicit type annotation in the Zero branch to
evaluate 0+0. However, the context contains the equation n = Zero,
which suggests that there should be another way to make progress.

To take advantage of such equations, we add some extra intelli-
gence to the way unfold handles CBV-evaluation contexts, that is
expressions of the form f a or (case b of . . . ). When encountering
such an expression it will first recursively unfold the function f , the
argument a, or the scrutinee b (as with ordinary CBV-evaluation),
and add the resulting equations to the context. However, it will then
examine the congruence equivalence class of these expressions to
see if they contain any suitable values—any value v is suitable for
a, a function value rec f x .a0 for f , and a value headed by a
data constructor for b—and then unfold the resulting expression
(rec f x .a0) v . (If there are several suitable values, one is selected
arbitrarily). This way unfolding can make progress where ordinary
CBV-evaluation gets stuck.

Using the same machinery we also provide a “smarter” version of
join, which first unfolds both sides of the equation, and then checks
that the resulting expressions are CC-equivalent. This lets us omit
the type annotations from npluszero:
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npluszero n = case n [eq] of

Zero → smartjoin

Suc m → ...

The unfold algorithm does not fully respect CC-equivalence, be-
cause it only converts into values. For example, suppose the con-
text contains the equation f a = v , Then unfold g (f a) will
evaluated f a and add the corresponding equations to the context,
but unfold g v will not cause f a to be evaluated. This gives the
programmer more control over what expressions are run.

We have not studied the theory of the unfold algorithm, and indeed
it is not a complete decision procedure for our propositional equal-
ity. If a subexpression of a does not terminate, unfold will spend all
its reduction budget on just that subexpression (but this is OK, be-
cause the programmer decides what expression a to unfold). And if
the context contains e.g. an equation between two unrelated func-
tion values, unfold will arbitrarily choose one of them (but it is hard
to think of an example where this would happen). We have found
unfold very helpful when writing examples.

9. Related work

The annotated core language in this paper is a slight variation on
previous work [24], which in turn is a subset of the full language
implemented by ZOMBIE [9]. In this version, in order to keep
the formalism small we omit some features (uncatchable excep-
tions and general datatypes) and replace the application rule with
a slightly less expressive value-dependent version. However, these
omissions are not significant (the original system is still compatible
with the “up to congruence” approach and is implemented in ZOM-
BIE). We also took the opportunity to simplify some typing rules,
and to emphasize the role of erasable annotations.

Propositional Equality The idea of using congruence closure is
not limited to the particular version of propositional equality used
by our core language, which has some nonstandard features (we
discussed the motivations for them in [24]). Below, we discuss how
those features interact with congruence closure and suggest how
the algorithm could be adapted to other settings.

First, our equality is very heterogeneous, that is we can form and
use equations between terms of different types. This has pros and
cons: it can be convenient for the programmer to not worry about
types, and the metatheory is simple, but it makes it hard to include
type-directed η-rules. However, congruence closure will work just
as well with a conventional homogeneous equality.

Second, we use an n-ary congruence rule, while most theories only
allow eliminating one equation at a time. For congruence closure
to work equality must be a congruence, e.g. given a = a′ and
b = b′ we should be able to conclude f a b = f a′ b′. Our n-
ary rule supports this in the most straightforward way possible. An
alternative (used in some versions of ETT [11]) would be to use
separate n-ary congruence rules for each syntactic form. Systems
that only allow rewriting by one equation at a time require some
tricks to avoid ill-typed intermediate terms (e.g. [6] Section 8.2.7).

Finally, in our system the elimination of propositional equality is
erased, so equations like a.b = a are considered trivially true.
This is similar to Extensional Type Theory, but unlike Coq and
Agda. Having such equations available is important, because the
elaborator inserts casts automatically, without detailed control by
the programmer. In Coq that would be problematic, because an
inserted cast could prevent two terms from being equal. However,
making the conversion erasable is not the only possible approach.

For example, in Observational Type Theory [2] the conversions are
computationally relevant but the theory includes a.b = a as an
axiom. In that system one can imagine the elaborator would use the
axiom to make the elaborated program type-check.

Stronger equational theories The theory of congruence closure
is one among a number of related theories. One can strengthen it
in various ways by adding more reasoning rules, in order to get a
more expressive programming language. However, doing so may
endanger type inference, or even the decidability of type checking.

One obvious question is whether we could extend the relation Γ �
a = b to do both congruence reasoning and β-reduction at the same
time. Unfortunately, this extension causes the relation to become
undecidable. Another natural generalization is to allow rewriting by
axiom schemes, i.e. instead of only using ground equations a = b
from the context, also instantiate and use quantified formulas like
∀xyz.a = b. In general this generalization (the “word problem”) is
also not decidable, e.g. it is easy to write down an axiom scheme
for the equational theory of SKI-combinators. However, there are
semi-decision procedures such as unfailing completion [4] which
form the basis of many automated theorem provers.

Even when preserving decidability one can still extend congruence
closure to know about specific axioms schemes, such as for nat-
ural numbers with successor and predecessor [20] or lists [19] or
injective data constructors [10].

Clearly one could design a programming language around a more
ambitious theory than just congruence closure. Many languages,
such as Dafny [17] and Dminor [7] call out to an off-the-shelf
theorem prover in order to take advantage of all the theories that
the prover implements. One reason we focus on a simple theory
is that it makes unification easier, which seems to offer promis-
ing avenues for future work on type inference. Unification modulo
congruence closure (rigid E-unification) is NP-complete [15]. This
compares favorably with unification modulo β (higher-order unifi-
cation) which is undecidable. Unification modulo other equational
theories (E-unification) must be handled on a theory-by-theory ba-
sis, and it is not an operation exposed by most provers.

Simplifying congruence proofs Our CONGTRANS simplification
rule is quite natural, and in fact the same rule has been studied be-
fore for a different reason. For efficiency, users of congruence clo-
sure want to make proofs as small as possible by taking advantage
of simplifications like refl; p 7→ p or p−1; p 7→ refl [13, 27]. How-
ever, uses of cong can hide the opportunity for such simplifications.
De Moura et al. define the same CONGTRANS rule and give the
following example [13]. Given assumptions h1 : a = b, h2 : b =
d, h3 : c = b, consider the proof term

(cong f (h1; h3
−1)); (cong f (h3; h2)) : fa = fd

We can get rid of the assumption h3 by doing the rewrite

(cong f (h1; h3
−1)); (cong f (h3; h2)) 7→ cong f (h1; h3

−1; h3; h2).

Dependent programming with congruence closure CoqMT [26]
aims to make Coq’s definitional equality stronger by including ad-
ditional equational theories, such as Presburger arithmetic, so that
for example the types Vec 0 and Vec (0 × n) can be used inter-
changeably. The prototype implementation only looks at the types
themselves, but the metatheory also considers using assumptions
from the context. This is complicated because CoqMT still wants to
consider types modulo β-convertibility, and in contexts with incon-
sistent assumptions like true = false one could write nonterminat-
ing expressions. Therefore CoqMT imposes restrictions on where
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an assumption can be used. VeriML makes the definitional equal-
ity user-programmable [25], and as an example builds a “stack”
combining congruence closure, β-reduction, and potentially other
theorem proving.

Neither CoqMT or VeriML prove that their implementation is com-
plete with respect to a declarative specification. For example, the
VeriML application rule requires that the applied function has the
type T → T ′ and then checks that T is definitionally equal to
the type of the argument, but there is no attempt to also handle
declarative derivations which require definitional equality to create
an arrow type.

The Guru language includes a tactic hypjoin [21] similar to our
smartjoin and unfold. However, instead of using equations from
the context, the programmer has to write an explicit list of equa-
tions, and unlike unfold it normalizes the given equations.

10. Conclusion

We consider this paper as an application of automatic theorem
proving to language design. Of course, in a higher-order logic, we
always expect that the programmer will have to supply some proofs
manually; the question is which ones. Intentional Type Theory rec-
ognizes that βη-equivalence in a normalizing language is decid-
able, so such equality proofs can be handled automatically as part
of the definitional equality relation. This paper considers a different
decidable equational theory, and proposes a language that is “the
dual of ITT”: while conventional dependently-typed languages au-
tomatically use equalities that follow from β-reductions but do not
automatically use assumptions from the context, our language uses
assumptions but does not automatically reduce expressions.

We look forward to exploring the ramifications of this design deci-
sion more deeply in the context of a full programming language.
Our ZOMBIE implementation provides a good baseline, but we
would like to add more automation. In particular, the addition of
rigid E-unification seems promising. Furthermore, we would like
to explore ways in which β-reduction and congruence closure can
co-exist—perhaps there is some way to achieve the benefits of each
approach in the same context.
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